
Philips Semiconductors
Connectivity

We welcome your feedback. Send it to wired.support@philips.com

Philips Semiconductors - Asia Product Innovation Centre
Visit http://www.flexiusb.com

April 2002

AN10005-01

ISP1161x Embedded Programming Guide

Rev. 1.0

Revision History:
Rev. Date Descriptions Author

Connectivity 2

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

This is a legal agreement between you (either an individual or an entity) and Philips Semiconductors. By accepting this
product, you indicate your agreement to the disclaimer specified as follows:

DISCLAIMER
PRODUCT IS DEEMED ACCEPTED BY RECIPIENT. THE PRODUCT IS PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, PHILIPS
SEMICONDUCTORS FURTHER DISCLAIMS ALL WARRANTIES, INCLUDING WITHOUT LIMITATION
ANY IMPLIED WARRANTIES OF MERCHANT ABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NONINFRINGEMENT. THE ENTIRE RISK ARISING OUT OF THE USE OR PERFORMANCE OF THE
PRODUCT AND DOCUMENTATION REMAINS WITH THE RECIPIENT. TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL PHILIPS SEMICONDUCTORS OR ITS
SUPPLIERS BE LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, DIRECT, INDIRECT, SPECIAL,
PUNITIVE, OR OTHER DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
OTHER PECUNIARY LOSS) ARISING OUT OF THIS AGREEMENT OR THE USE OF OR INABILITY TO
USE THE PRODUCT, EVEN IF PHILIPS SEMICONDUCTORS HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

Connectivity 3

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

CONTENTS
1. INTRODUCTION ...7

2. ISP1161X SOFTWARE MODELS ...8

2.1. HOST-ONLY MODE ...8
2.2. DEVICE-ONLY MODE...9
2.3. SIMULTANEOUS HOST-AND-DEVICE MODE ..10

3. ISP1161X HARDWARE MODELS...11

3.1 HOST CONTROLLER HARDWARE MODEL ..11
3.2. DEVICE CONTROLLER HARDWARE MODEL...12

4. ISP1161X SOFTWARE ARCHITECTURE .. 13

4.1. USB HOST SOFTWARE ARCHITECTURE...13
4.2. HOST STACK ARCHITECTURE ..14
4.3. USB DEVICE SOFTWARE ARCHITECTURE ..16

5. PROGRAMMING THE HOST CONTROLLER OF ISP1161X.. 17

5.1. SOFTWARE ACCESSIBLE HARDWARE COMPONENTS...17
5.2. HC CONTROL AND STATUS REGISTERS ..17

5.2.1. Writing and Reading of the 16-Bit and 32-Bit Registers ...19
5.3. WRITING AND READING OF THE ATL AND ITL BUFFERS..21
5.4. TYPICAL HARDWARE INITIALIZATION SEQUENCE ...22

5.4.1. Detecting the Host Controller...23
5.4.2. Software Resetting the Host Controller...23
5.4.3. Configuring the HcHardwareConfiguration Register ..25
5.4.4. Configuring Interrupts..27
5.4.5. Configuring the HcFmInterval Register..30
5.4.6. Configuring Root Hub Registers ..30
5.4.7. Setting the ITL and ATL Buffer Lengths ..32
5.4.8. Installing INT1 Interrupt Service Routine...33
5.4.9. Setting the Host Controller to the Operational State ..34
5.4.10. Setting the Host Controller to Perform USB Enumeration ..34

5.5. HOST CONTROLLER DRIVER OPERATION FLOW ..36
5.6. ACCESSING THE ATL BUFFER...36

5.6.1. Using SOFITLInt Versus ATLInt ..36
5.6.2. Starting Scan of the ATL Buffer by Hardware ...39

5.7. ACCESSING THE ITL BUFFER ..40
5.8. FLOWCHART OF THE HOST CONTROLLER IN THE OPERATIONAL MODE..41
5.9. SETTING UP PTDS FOR TRANSFERS...42

5.9.1. Control Transfer ..45
5.9.2. Bulk, Interrupt and Isochronous Transfers...46

5.10. DATA STRUCTURES FOR LIST PROCESSING ..47
5.11. ERROR HANDLING..48

6. PROGRAMMING THE DEVICE CONTROLLER OF ISP1161X ... 49

6.1. FIRMWARE STRUCTURE OF THE DEVICE CONTROLLER...49
6.1.1. Hardware Abstraction Layer—HAL4SYS.C ..50
6.1.2. Hardware Abstraction Layer—HAL4D13.C..50
6.1.3. Interrupt Service Routine—ISR.C ..50
6.1.4. Protocol Layer—CHAP_9.C..50

Connectivity 4

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

6.1.5. Protocol Layer—D13BUS.C...50
6.1.6. Main Loop—MAINLOOP.C ...50

6.2. PORTING THE FIRMWARE TO OTHER CPU PLATFORM ...50
6.3. DEVELOPING THE FIRMWARE IN THE POLLING MODE...51
6.4. HARDWARE ABSTRACTION LAYER ...51

6.4.1. Hardware Abstraction Layer for the System..51
6.4.2. Hardware Abstraction Layer for the Device Controller of ISP1161x..52

6.5. INTERRUPT SERVICE ROUTINE..53
6.5.1. Bus Reset...55
6.5.2. Suspend Change...56
6.5.3. EOT Handler...56
6.5.4 Control Endpoint Handler..56
6.5.5. Control OUT Handler..57
6.5.6 Control IN Handler ...59
6.5.7. Bulk Endpoint Handler..61
6.5.8. ISO Endpoint Handler...65

6.6. MAIN LOOP ...67
6.7. STANDARD DEVICE REQUESTS ...70

6.7.1. Clear Feature Request ...70
6.7.2. Get Status Request ..72
6.7.3. Set Address Request ..73
6.7.4 Get Configuration Request ...74
6.7.5. Get Descriptor Request..75
6.7.6. Set Configuration Request..76
6.7.7. Get and Set Interface Requests...77
6.7.8. Set Feature Request ...77
6.7.9. Class Request ..78

6.8. VENDOR REQUEST ..78
6.8.1. Vendor Request for the Bulk Transfer...78
6.8.2 CATC Capture of a PIO OUT Transfer ...79
6.8.3. CATC Capture of a PIO IN Transfer...80
6.8.4. Vendor Request for the ISO Transfer..81
6.8.5 CATC Capture of an ISO OUT Transfer ..81
6.8.6. CATC Capture of an ISO IN Transfer...82

7. REFERENCES ... 82

TABLES
Table 5-1: HC Control and Status Register Summary ...18
Table 5-2: HcScratch Register: Bit Allocation ...23
Table 5-3: HcCommandStatus Register: Bit Allocation...24
Table 5-4: HcControl Register: Bit Allocation ..24
Table 5-5: HcHardwareConfiguration Register: Bit Allocation ...26
Table 5-6: HcHardwareConfiguration Register: Bit Description...26
Table 5-7: HcInterruptEnable Register: Bit Allocation ...27
Table 5-8: HcµPInterruptEnable Register: Bit Allocation ..28
Table 5-9: HcInterruptStatus Register: Bit Allocation ...29
Table 5-10: HcµPInterrupt Register: Bit Allocation...29
Table 5-11 HcFmInterval Register: Bit Allocation ...30
Table 5-12: HcRhDescriptorA Register: Bit Allocation ..31
Table 5-13: HcRhStatus Register: Bit Allocation ..32
Table 5-14: HcRhDescriptorB Register: Bit Allocation...32
Table 5-15: USB Transaction Error Codes..48
Table 6-1: Building Blocks Modifications ..50

Connectivity 5

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Table 6-2: Interrupt Register: Bit Allocation ...54
Table 6-3: Endpoint Status Register: Bit Allocation...58
Table 6-4: Endpoint Status Register: Bit Description..59
Table 6-5: Recommended Endpoint Configuration Register Programming for a Bulk Endpoint..61
Table 6-6: Endpoint Configuration Register: Bit Allocation ..61
Table 6-7: Endpoint Configuration Register: Bit Description..61
Table 6-8: Recommended Endpoint Configuration Register Programming for an ISO Endpoint ..65
Table 6-9: Mode Register: Bit Allocation ...69
Table 6-10: Mode Register: Bit Description ..69
Table 6-11: Device Address Register: Bit Allocation ...73
Table 6-12: Device Address Register: Bit Description...74
Table 6-13: Device Request ..78
Table 6-14: Proprietary Definition of the Sample Firmware and Applet ...79
Table 6-15: Device Request ..81

FIGURES
Figure 2-1: ISP1161x Host-Only Mode Software Model ..8
Figure 2-2: ISP1161x Device-Only Mode Software Model ..9
Figure 2-3: ISP1161x Simultaneous Host-and-Device Mode Software Model ...10
Figure 3-1: ISP1161x Host Controller Hardware Model...11
Figure 3-2: ISP1161x Device Controller Hardware Model...12
Figure 4-1: USB Host Software Architecture ..13
Figure 4-2: Host Stack Architecture..14
Figure 4-3: Host Stack Calling Sequence Example...15
Figure 4-4: USB Device Software Architecture ..16
Figure 5-1: 16-Bit Register Access Cycle ..19
Figure 5-2: 32-Bit Register Access Cycle ..19
Figure 5-3: Code Example for 32-Bit Register Write ...20
Figure 5-4: Code Example for 32-Bit Register Read..20
Figure 5-5: Code Example for 16-Bit Register Read..20
Figure 5-6: Code Example for 16-Bit Register Write ...21
Figure 5-7: Code Example for Writing to the ATL Buffer ...22
Figure 5-8: Code Example for Detecting the Host Controller...23
Figure 5-9: Code Example for Resetting the Host Controller..24
Figure 5-10: Code Example for Setting the Host Controller to the RESET State...24
Figure 5-11: Code Example for Initializing the HcHardwareConfiguration Register..27
Figure 5-12: ISP1161x Host Controller Interrupt Logic ...28
Figure 5-13: Code Example for Initializing the Host Controller Interrupt..29
Figure 5-14: Code Example for Initializing the HcDescriptorA Register ..31
Figure 5-15: Code Example for Initializing the HcRhStatus Register...31
Figure 5-16: Code Example for Setting the ATL and ITL Buffer Lengths ...33
Figure 5-17: Code Example for Setting the Host Controller to the Operational State..34
Figure 5-18: ATLInt Interrupt Flow ...37
Figure 5-19: Running the Host Controller with the ATLInt Interrupt...38
Figure 5-20: Running the Host Controller with the SOFITLInt Interrupt..38
Figure 5-21: Code Example for Writing to the ATL Buffer...39
Figure 5-22: Code Example for Reading from the ATL Buffer...40
Figure 5-23: ITL Buffer Access Flow ...40
Figure 5-24: Code Example for Writing to the ITL Buffer ..41
Figure 5-25: Code Example for Reading from the ITL Buffer ..41
Figure 5-26: Host Controller in the Operational State Flow Chart ...42
Figure 5-27: PTD Header Fields..45
Figure 5-28: PTD Flow for the Control Transfer...45

Connectivity 6

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Figure 5-29: Data Toggle Bit Setting Example Across Multiple PTDs ..46
Figure 5-30: Data Toggle Bit Setting in Multiple PTD Data Packets ...47
Figure 5-31: Typical List Structure ..47
Figure 5-32: List Processing Data Structure ..48
Figure 6-1: Firmware Structure of the ISP1161x Device Controller...49
Figure 6-2: Flowchart of ISR..53
Figure 6-3: Code Example of a Typical ISR ..54
Figure 6-4: Code Example to Read the Interrupt Register ...55
Figure 6-5: Control Flags...55
Figure 6-6: State Machine of the Control Transfer ..56
Figure 6-7: Flowchart of the Control OUT Handler ...57
Figure 6-8: Code Example to Check Status of the OUT Endpoint ..57
Figure 6-9: Code Example for Reading the Endpoint Status Register ...58
Figure 6-10: Code Example for Reading the Contents of an OUT Buffer..58
Figure 6-11: Code Example for Reading the Endpoint Status Register ...59
Figure 6-12: Code Example to Check the Status of the IN Endpoint..60
Figure 6-13: Code Example for Writing the Contents to an IN Buffer ...60
Figure 6-14: Flowchart of the Control IN Handler..60
Figure 6-15: Code Example for Configuring a Bulk OUT or Bulk IN Endpoint ..62
Figure 6-16: Function Definition of void SetEndpointConfig(UCHAR bEPConfig, UCHAR bEPIndex)62
Figure 6-17: Flowchart of the Bulk OUT Handler...62
Figure 6-18: Code Example for Reading the Endpoint Status Register ...63
Figure 6-19: Code Example to Check the Status of the Bulk OUT Endpoint..63
Figure 6-20: Code Example for Reading the Contents of a Bulk OUT Buffer ..63
Figure 6-21: Flowchart of the Bulk IN Handler ...64
Figure 6-22: Code Example for Reading the Endpoint Status Register ...64
Figure 6-23: Code Example to Check the Status of the Bulk IN Endpoint ..64
Figure 6-24: Code Example for Writing the Contents into a Bulk IN Buffer...65
Figure 6-25: Code Example for Configuring an ISO OUT or ISO IN Endpoint..65
Figure 6-26: Function Definition of void SetEndpointConfig(UCHAR bEPConfig, UCHAR bEPIndex)65
Figure 6-27: Flowchart of the ISO OUT Handler..66
Figure 6-28: Flowchart of the ISO IN Handler ..66
Figure 6-29: Code Example for Reading the Endpoint Status Register ...67
Figure 6-30: Code Example for Reading from an ISO Endpoint Buffer...67
Figure 6-31: Code Example for Writing to an ISO Endpoint Buffer ...67
Figure 6-32: Flowchart of the Main Loop..68
Figure 6-33: Code Example for Writing to the Mode Register ..69
Figure 6-34: Code Example on Setting SoftConnect ...69
Figure 6-35: Flowchart of Clear Feature ..70
Figure 6-36: Code Example to Send Zero-Length Packet ..71
Figure 6-37: Code Example to Stall or Unstall an Endpoint ..71
Figure 6-38: Flowchart of Get Status..72
Figure 6-39: Flowchart of Set Address ...73
Figure 6-40: Code Example of the Set Address Routine...73
Figure 6-41: Flowchart of Get Configuration ...74
Figure 6-42: Flowchart of Get Descriptor ...75
Figure 6-43: Flowchart of Set Configuration...76
Figure 6-44: Flowchart of Get Interface ..77
Figure 6-45: Flowchart of Set Interface..77
Figure 6-46: Flowchart of Set Feature ..78
Figure 6-47: CATC Capture of a PIO OUT Transfer ...79
Figure 6-48: CATC Capture of a PIO IN Transfer..80
Figure 6-49: CATC Capture of an ISO OUT Transfer ...81
Figure 6-50: CATC Capture of an ISO IN Transfer..82

Connectivity 7

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

1. Introduction
ISP1161x (denotes ISP1161 and ISP1161A) is a single-chip Universal Serial Bus (USB) Host Controller (HC) and Device
Controller (DC) that complies with Universal Serial Bus Specification Rev. 2.0 (Full Speed). These two USB controllers—the
Host Controller and the Device Controller—share the same microprocessor bus interface. These controllers have the
same data bus, but different I/O locations. They also have separate interrupt request output pins, separate direct
memory access (DMA) channels that include separate DMA request output pins (DREQ) and DMA acknowledge input
pins (DACK). This makes it possible for a microprocessor to control both the USB Host Controller and the USB
Device Controller at the same time.

ISP1161x provides two downstream ports for the USB Host Controller and one upstream port for the USB Device
Controller. Each downstream port has its own overcurrent (OC) detection input pin and power supply switching control
output pin. The upstream port has its own VBUS detection input pin. ISP1161x also provides separate wake-up input pins
and suspended status output pins for the USB Host Controller and the USB Device Controller, respectively. This makes
power management flexible. The downstream ports for the Host Controller can be connected to any USB compliant
USB devices and USB hubs that have USB upstream ports. The upstream port for the Device Controller can be
connected to any USB compliant USB host and USB hubs that have USB downstream ports.

The Host Controller is adapted from Open Host Controller Interface Specification for USB, Release: 1.0a referred to as OHCI in
the rest of this document.

The Device Controller is compliant with most device class specifications, such as Imaging Class, Mass Storage Devices,
Communication Devices, Printing Devices and Human Interface Devices. ISP1161x is well suited for embedded systems
and portable devices that require a USB host only, a USB device only, or a combined and configurable USB host and
USB device capabilities. ISP1161x provides high flexibility to the systems that have it built-in. For example, a system that
has ISP1161x built-in allows it not only to be connected to a PC or USB hub that has a USB downstream port, but also
to be connected to a device that has a USB upstream port, such as USB printer, USB camera, USB keyboard and USB
mouse, among others. ISP1161x enables point-to-point connectivity between embedded systems. An interesting
application example is to connect a ISP1161x Host Controller with a ISP1161x Device Controller.

Connectivity 8

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

2. ISP1161x Software Models
As ISP1161x can function in one of the three modes—host-only mode, device-only mode and simultaneous host-and-
device mode—each mode of operation adopts a different software model.

2.1. Host-Only Mode
The host-only mode software model consists of the host stack, one or more class drivers, zero or more device drivers,
and the application. Figure 2-1 shows the data flow and the call hierarchy of the software components in this software
model.

Figure 2-1: ISP1161x Host-Only Mode Software Model

Since a single USB Host Controller can have multiple USB slave devices connected to it, the host-only mode software
model can contain multiple class drivers, in which each class driver services each type of USB slave device. Usually, the
application accesses class drivers directly to perform USB operations. However, in some cases, it makes sense to have
one more layer, dubbed Device Driver, between the class driver and the application. For example, you can have device
drivers for different types of printers in which these device drivers access one common USB printer class driver to
perform operations on printers.

Connectivity 9

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

2.2. Device-Only Mode
The software model for the device-only mode consists of the device stack, a class driver and the application. The data
flow and the call hierarchy of the software components in this software model are given in Figure 2-2.

Figure 2-2: ISP1161x Device-Only Mode Software Model

Since a USB slave device performs a single class of functions, there must only be one class driver for a USB slave device.
The application accesses the class driver when performing USB operations.

Connectivity 10

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

2.3. Simultaneous Host-and-Device Mode
The most versatile mode of ISP1161x is the simultaneous host-and-device mode. The software model for this mode is
realized by combining the host-only mode and device-only mode software models into a single model. The resulting
software model is depicted in Figure 2-3.

Figure 2-3: ISP1161x Simultaneous Host-and-Device Mode Software Model

In this mode, ISP1161x functions as if there are separate USB Host and Device Controllers. The software model for this
mode requires no interdependencies between the host-side portion and the device-side portion of the software. In other
words, the device-side software runs totally independent of the host-side software.

Connectivity 11

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

3. ISP1161x Hardware Models

3.1. Host Controller Hardware Model
The major difference between the OHCI Host Controller and ISP1161x is that the OHCI Host Controller is a bus-
master device whereas ISP1161x is not. In the OHCI Host Controller, the USB data packet is sent from and received in
the system memory by the bus master DMA present in the OHCI Host Controller. However, in ISP1161x, the
microprocessor is responsible for moving the USB data packet between the system memory, and the ITL and ATL
buffers inside ISP1161x. An I/O bus interface and the bus master DMA are eliminated from ISP1161x, and therefore,
the term “slave Host Controller”. This is because ISP1161x is intended to be used for embedded applications in which
cost and design simplicity are important design considerations for choosing a Host Controller IC.

Figure 3-1: ISP1161x Host Controller Hardware Model

µP

System M em orySystem M em ory

ATL Buffer for
Control, Bulk, Interrupt

ITL Buffer for
Isochronous

PTD Header

PTD Payload

PTD Header

PTD Header

PTD Header

PTD Payload

PTD Payload

PTD Payload

PTD Header

PTD Header

PTD Header

PTD Header

USB Bus

PTD Payload

PTD Payload

PTD Payload

PTD Payload

ISP1161

Sy
st

em
 B

us

Sl
av

e
D

M
A

 o
r P

IO
 D

at
a

Tr
an

sf
er

Connectivity 12

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

3.2. Device Controller Hardware Model
When the Device Controller part of ISP1161x is in operation, the microprocessor moves the USB packet data between
the system memory and endpoint FIFOs via Programmed I/O (PIO) or slave DMA built into ISP1161x. USB packets
are sent from and received in endpoint FIFOs.

Figure 3-2: ISP1161x Device Controller Hardware Model

µP

System MemorySystem Memory

USB Bus

ISP1161

Sy
st

em
 B

us

Sl
av

e
D

M
A

 o
r P

IO
 D

at
a

Tr
an

sf
er

Endpoint 0 FIFO

Endpoint 1 FIFO

Endpoint 2 FIFO

Endpoint 14 FIFO

Endpoint 13 FIFO

Connectivity 13

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

4. ISP1161x Software Architecture

4.1. USB Host Software Architecture

Figure 4-1: USB Host Software Architecture

As can be seen in Figure 4-1, the USB host software architecture includes the Universal Serial Bus Driver (USBD), the
Host Controller Driver (HCD) and the client software. The client software can be the application code or USB class
drivers. The USBD and the HCD are collectively referred to as the USB host stack. In the USB host stack, the USBD
deals with hardware-independent protocol related aspects of USB whereas the HCD deals with hardware-dependent

Connectivity 14

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

protocol related aspects of USB. Therefore, it is the HCD that accesses the USB Host Controller hardware. In other
words, the HCD drives the Host Controller by manipulating programmable hardware registers inside the Host
Controller. This document explains how to program the Host Controller hardware of ISP1161x to enable it to perform
HCD functions when it runs as a USB Host Controller.

4.2. Host Stack Architecture
Figure 4-2 shows the major functions built in a USB host stack.

Figure 4-2: Host Stack Architecture

The typical sequence of calls that occurs when performing a USB transfer is as follows:

1. The application initiates a write or read over the USB bus.

2. The class driver calls USBD APIs for the write or read initiated by the application.

3. USBD APIs call HCD APIs on behalf of the calling class driver.

4. HCD APIs cause USB transactions to occur.

5. The class driver is notified that the transfer is complete.

6. The application is notified of the transfer completion.

U
SB

D
H

C
D

API Services for Class Drivers

Class Driver
Registration

Data Transport
Services

Descriptor
Management

Class Driver
Management

Device
Enumeration

API Services for Bus Driver

Transaction
List

Processing

Host Controller
Enumeration

ISR
Management

Hardware Access Management

Host Controller Hardware

Class Drivers

Connectivity 15

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

The following example shows the call sequence from the class driver to the USBD and the HCD in a host stack
implementation.

st_URB_SEND_COMMAND stUrb;

stUrb.stHeader.uDeviceHandle = uDeviceHandle;
stUrb.stHeader.uAPIService = USBD_API_SEND_COMMAND;
stUrb.pbyBufferAddress = NULL;
stUrb.uBufferLength = 0;
stUrb.uRequest = SET_IDLE;
stUrb.uDirection = USB_HOST_TO_DEVICE;
stUrb.uType = USB_TYPE_CLASS;
stUrb.uRecipient = USB_RECIPIENT_INTERFACE;
stUrb.uValueDesc = 2;
stUrb.uValueIndex = 0;
stUrb.uIndex = stMouse -> uSelectedInterface;
USBD_API((PVOID) &stUrb, &uRetval)

(In Class Driver)

st_DEVICE_REQUEST stReq;

stReq.bmRequestType = pstUrb->uType;
stReq.byRequest = pstUrb-uRequest;
stReq.wValue = pstUrb->uValueDesc;
stReq.wIndex = pstUrb->uValueIndex;
stReq.wLength = pstUrb->uLength;

uStatus = HcdControlTransfer (uHandle, &stReq, 0, 0);

HCDHCD

USBD

Host Stack

Figure 4-3: Host Stack Calling Sequence Example

In this example, the USBD_API() call (in the class driver box) is the calling mechanism for calling USBD APIs. The
HcdControlTransfer() function is one of the available HCD APIs and it does a control transfer.

Connectivity 16

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

4.3. USB Device Software Architecture

Device
Application
Software

Device
Function
Software

Device
Controller

Driver

HAL

USB Device Controller

USB

HAL
Interface

Driver
Interface

Function
Interface

Packets

Transactions

Transfers

Data

Figure 4-4: USB Device Software Architecture

A USB device is a slave device, and its job is to respond to requests sent by the host. The Device Controller Driver
responds to requests on its own, if these requests are standard requests, that is, USB standard requests. If these requests
are function specific, that is, class requests, the Device Controller Driver passes them to the device function software.
The device function software in conjunction with the device application software handle these requests and send
responses to the host. Logically, the Device Controller Driver interacts with the USBD on the host side and the device
function software interacts with the host class driver.

Connectivity 17

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

5. Programming the Host Controller of ISP1161x

5.1. Software Accessible Hardware Components
The major hardware components of the Host Controller in ISP1161x that are accessible by software are:

• HC control and status registers

• ATL buffer

• ITL buffer.

5.2. HC Control and Status Registers
The HC control and status registers in ISP1161x include a set of operational OHCI compliant registers (32-bit wide) and
a set of ISP1161x specific registers (16-bit wide). Each read/write register has a set of two offset indices: one for the
read access and the other for the write access. Read-only or write-only registers have only one offset index. For
convenience, the command-write operation, can be ORed with 0x80, so that only one value is required to be defined for
each register. The offset indices for the HC control and status registers are given in Table 5-1.

Connectivity 18

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Table 5-1: HC Control and Status Register Summary

Connectivity 19

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

5.2.1. Writing and Reading of the 16-Bit and 32-Bit Registers
Since the data bus in ISP1161x is 16-bit wide, 32-bit registers are read or written in two data cycles. Figure 5-1 illustrates
a 16-bit register access cycle.

read/write data
(16 bits)

16-bit register access cycle

t

write command
(16 bits)

data bus Command code
Register data
(lower word)

Figure 5-1: 16-Bit Register Access Cycle

In Figure 5-1, a command code is the offset index of the register being accessed. Therefore, for example, to write a value
into the HcScratch register, the HCD will put the offset index of A8H on the data bus followed by a single 16-bit value.
To read the HcScratch register, the HCD will put the offset index of the register on the data bus and read a single 16-bit
data from the data bus.

read/write data
(lower 16 bits)

32-bit register access cycle

t

read/write data
(upper 16 bits)

write command
(16 bits)

data bus Command code
Register data
(upper word)

Register data
(lower word)

Figure 5-2: 32-Bit Register Access Cycle

To write to a 32-bit register, the HCD will put the offset index of the register on the data bus followed by two
consecutive 16-bit data. To read, the HCD will put the offset index of the register on the data bus and read two
consecutive 16-bit data from the data bus.

The sample code in Figure 5-3 shows a 32-bit register access with ISP1161x connected to an ISA bus in the x86
platform with two ISA ports assigned to the Host Controller of ISP1161x: the command and data ports.

#define DATA_PORT 0x290 // Use the PC’s I/O address 0x290 for the Host Controller
// data port

#define COMMAND_PORT 0x292; // Use the PC’s I/O address 0x292 for the Host Controller
// command port

unsigned long uReg, uRegData, uData;

uReg = 0x81; // HcControl write is 0x81
uRegData = 0x00010020;

outw(COMMAND_PORT, uReg);

uData = uRegData & 0x0000FFFF;

Write data to the data port.
Write the lower 16-bit data first.

The HcControl register writes the offset index.

Write the offset index to the command port.

Connectivity 20

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

outw(DATA_PORT, uData);

uData = (uRegData & 0xFFFF0000) >> 16; // AND followed by right bit shift of 16 bits
outw(DATA_PORT, uData);

Figure 5-3: Code Example for 32-Bit Register Write

In the preceding example, the command and data ports are 16-bit wide. The outw() function is an x86 assembly routine
that writes a 16-bit data to the specified port.

The following example code reads data from a 32-bit register.
unsigned long uRegData;

uHcControlReg = 0x01; // HcControl register read is 0x01

outw(COMMAND_PORT, uHcControlReg);

uData = inw(DATA_PORT);

uRegData = uData & 0x0000FFFF;

uData = inw(DATA_PORT);
uRegData |= (uData & 0x0000FFFF) << 16;

Figure 5-4: Code Example for 32-Bit Register Read

The function inw() is an x86 assembly routine that reads a 16-bit data from the specified port.

The code example in Figure 5-5 reads a 16-bit value from a 16-bit register.
unsigned long uRegData;

uHcScratchReg = 0x28;

outw(COMMAND_PORT, uHcScratchReg);

uData = inw(DATA_PORT);

Figure 5-5: Code Example for 16-Bit Register Read

The code example in Figure 5-6 writes a 16-bit value to a 16-bit register.
unsigned long uData;

uScratchReg = 0xA8;
uData = 0xAA55;

The HcControl register writes the offset index.

Write the offset index to the command port.

Read the lower 16-bit data from the data port.

Save the lower 16-bit data.

Read the higher 16-bit data and concatenate the lower and higher 16-bit data.
For 16-bit read, this step is not required.

The HcScratch register reads the offset index.

Write the offset index to the command port.

Read the 16-bit register value from the data port.

Write the offset index to the command port.

The HcScratch register writes the offset index.

Write the higher 16-bit data. For 16-bit register write, this step is not necessary.

Connectivity 21

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

outw(COMMAND_PORT, uScatchReg);

outw(DATA_PORT, uData);

Figure 5-6: Code Example for 16-Bit Register Write

Throughout this document, pseudo function calls—WRITE_32BIT_REG(), READ_32BIT_REG(),
WRITE_16BIT_REG() and READ_16BIT_REG()—will be used in code examples to depict read/write access to
ISP1161x internal registers.

5.3. Writing and Reading of the ATL and ITL Buffers
The ATL and ITL buffers are physically located in the FIFO buffer RAM inside ISP1161x. Each buffer contains a list of
PTDs that the Host Controller hardware uses to send or receive USB packets to or from USB slave devices. As part of
scheduling USB transfers, the HCD constructs PTDs in the system memory and then moves the constructed PTDs to
the ATL or ITL buffer. The Host Controller hardware allows software to access each buffer as if they are separate
hardware buffers. The HCD accesses the ATL buffer by using the hardware registers—HcTransferCounter (22H/A2H)
and HcATLBufferPort (41H/C1H)—and the ITL buffer by using HcTransferCounter and HcITLBufferPort (40H/C0H).

The example code in Figure 5-7 shows how to write and read to and from the ATL buffer in the PIO mode.
void fnv1161AtlWrite(char * pbyChar, unsigned long uTotalByte)
{

unsigned long uTotalDoubleWord;
unsigned long * puLong;
unsigned long uIndex;
unsigned long uData1;
unsigned long uData2;

outw(COMMAND_PORT, HcTransferCounter | 0x80);
outw(DATA_PORT, uTotalByte);

uTotalDoubleWord = uTotalByte >> 2;
puLong = (unsigned long *) pbyChar;

outw(COMMAND_PORT ,HcATLBufferPort | 0x80));

iodelay();
iodelay();
iodelay();

cli();

for (uIndex = 0; uIndex < uTotalDoubleWord; uIndex ++)
{

uData1 = puLong[uIndex] & 0x0000FFFF;
uData2 = (puLong[uIndex] & 0xFFFF0000) >> 16;

outw(DATA_PORT,uData1); // Write lower 16-bit first
outw(DATA_PORT,uData2); // Write higher 16-bit

Program the 16-bit transfer counter register: HcTransferCounter. Make sure that bit 7 of the register offset
index is 1.

Express the total number of bytes to be transferred in terms of double word.
Typecast the byte aligned data buffer to double word aligned buffer.

Write the HcATLBufferPort register offset index to the command port.
Make sure that bit 7 of the register offset index is 1.

Wait a while before writing data bytes. Each iodelay() causes 1 system tick delay.
There must be a minimum of 300 ns delay between the command and data phases.

Disable all hardware interrupts during the data write.

Write data to the ATL buffer by writing to the data port 16 bits at a time.

Write the 16-bit data to the data port.

Connectivity 22

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

// There must be a minimum of a 112 ns delay between data phases.
iodelay();

}

sti();
}

Figure 5-7: Code Example for Writing to the ATL Buffer

5.4. Typical Hardware Initialization Sequence
When the ISP1161x hardware is powered on, the Host Controller Driver (HCD) must go through the following
hardware initialization steps to set the Host Controller into the operational state.

Note: In addition to the hardware initialization steps described later, the HCD must also initialize necessary data
structures in between the hardware initialization steps. The requirements for the initialization of data structures differ
depending on the underlying operating system and description of data structures is outside the scope of this document.

1. Detecting the Host Controller

2. Software resetting the Host Controller

a. Setting the Host Controller to the RESET state

3. Configuring the HcHardwareConfiguration register

a. Setting the interrupt output polarity

b. Setting the interrupt trigger mode between level triggered and edge triggered

c. Enabling the global interrupt INT1

d. Setting DMA related modes, if DMA is used

 i. DACK input polarity

 ii. DREQ output polarity

4. Configuring interrupts

a. USB specific interrupts

 i. Master interrupt enable

 ii. Root hub status change interrupt

 iii. Frame number overflow interrupt

 iv. Unrecoverable error interrupt

 v. Resume detect interrupt

 vi. Start-of-Frame (SOF) interrupt

 vii. Scheduling overrun interrupt

b. Host Controller related interrupts

 i. Clock ready interrupt

 ii. Host Controller suspend interrupt

 iii. OPR register interrupt

 iv. All EOT interrupt

 v. ATL done interrupt

Enable all hardware interrupts when the write is done.

Connectivity 23

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

 vi. SOF ITL done interrupt

5. Configuring the HcControl register

a. Setting remote wake-up enable

b. Setting remote wake-up connected

6. Configuring the HcFmInterval register

7. Configuring the root hub registers

a. HcRhDescriptorA register

b. HcRhDescriptorB register

c. HcRhStatus register

8. Setting the ITL and ATL buffer lengths

9. Installing the INT1 interrupt service routine

10. Setting the Host Controller to the operational state.

5.4.1. Detecting the Host Controller
The detection of the Host Controller is done by the HCD by writing a value to the HcScratch register (see Table 5-2),
reading from the HcScratch register and comparing the expected and actual values of the register. If the two values match,
the HCD concludes that the Host Controller is present. The correct HcChipID read can also be used as an extra
condition for detection of the Host Controller.

Table 5-2: HcScratch Register: Bit Allocation
READ INDEX—28H; WRITE INDEX—A8H

The pseudocode for detecting an ISP1161x Host Controller is given in Figure 5-8.

WRITE_16BIT_REG(HcScratch, 0x55AA);
uData = READ_16BIT_REG(HcScratch);

if (uData == 0x55AA)
{

uData = READ_16BIT_REG(HcChipID)

// The high byte of the chip ID for ISP1161x.
if (uData & 0xFF00) == 0x6100

foundISP1161x;
)
else

NotFoundISP1161x;

Figure 5-8: Code Example for Detecting the Host Controller

5.4.2. Software Resetting the Host Controller
The software reset of the Host Controller involves two steps:

1. Resetting the Host Controller

Connectivity 24

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

2. Setting the Host Controller to the RESET state.

The HCD resets the Host Controller by setting the HCR bit in the HcCommandStatus register (see Table 5-3). Since it
takes a while (about 10 µs) to reset the Host Controller, the HCD must wait for at least 10 µs before it proceeds. A
pseudocode for resetting the Host Controller is given in Figure 5-9.

// Read the contents of the HcCommandStatus register.
uValue = READ_32BIT_REG(HcCommandStatus);

// Set the HCR bit
uValue |= 0x00000001;

WRITE_32BIT_REG(hcCommandStatus, uValue);

// Wait until reset is done. When reset is done, the HCR bit is set to logic 0.
While (READ_32BIT_REG(HcCommandStatus & 0x00000001));

Figure 5-9: Code Example for Resetting the Host Controller

Table 5-3: HcCommandStatus Register: Bit Allocation
READ INDEX—02H; WRITE INDEX—82H

Once the Host Controller is reset, the HCD must set the Host Controller to the RESET state by writing 00B to the
HCFS field in the HcControl register (see Table 5-4). This step completes resetting of the Host Controller.

uValue = READ_32BIT_REG(HcControl);

// When writing a new value to the HcControl register, the state of other bits in the register
// must be preserved by writing 1 to the bits already set to 1 in the register.
uValue &= ~0x000000C0;

// 00B in bit[7:6] => RESET state
uValue |= 0x00000000

WRITE_32BIT_REG (HcControl, uValue);

Figure 5-10: Code Example for Setting the Host Controller to the RESET State

Table 5-4: HcControl Register: Bit Allocation
READ INDEX—01H; WRITE INDEX—81H

Connectivity 25

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

HCFS (Host Controller Functional State)—Bits[7 to 6]
• 00B—RESET

• 01B—RESUME

• 10B—OPERATIONAL

• 11B—SUSPEND.

5.4.3. Configuring the HcHardwareConfiguration Register
This register controls the characteristics of the Host Controller hardware behavior. The bit settings in this register vary
depending on how the system board is designed. All bits except bits[12:10] have a power-up value. Bits[12:10] must be
set properly depending on how the system board is designed. The bit[0] controls the state of the INT1 pin of the Host
Controller, which is the interrupt output pin for the Host Controller side of ISP1161x. For interrupts to be enabled in
the Host Controller, the bit[0] must be set. With the bit[0] of the HcHardwareConfiguration register set to logic 1, the bits
in the HcµPInterruptEnable register control the activation of each interrupt available in the Host Controller.

Connectivity 26

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Table 5-5: HcHardwareConfiguration Register: Bit Allocation
READ INDEX—20H; WRITE INDEX—A0H

The bit description of the HcHardwareConfiguration register is given in Table 5-6.

Table 5-6: HcHardwareConfiguration Register: Bit Description

Connectivity 27

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

In the ISA-based ISP1161x evaluation board, all bit fields can be set to power-up values except the
InterruptOutputPolarity bit. The interrupt output polarity is active HIGH. The following code example programs the
HcHardwareConfiguration register for the ISA-based ISP1161x evaluation board connected to a personal computer (PC)
motherboard.

#define INTERRUPT_PIN_ENBLE 0x0001 // INT1 pin in ISP1161x
#define INTERRUPT_OUTPUT_POLARITY 0x0004 // Active HIGH
ULONG uData;

// Read the register.
uData = READ_16BIT_REG(HcHardwareConfiguration);

// Active HIGH enables global interrupt pin INT1.
uData |= (INTERRUPT_PIN_ENABLE | INTERRUPT_OUTPUT_POLARITY);

WRITE_16BIT_REG(HcHardwareConfiguration, uData);

Figure 5-11: Code Example for Initializing the HcHardwareConfiguration Register

5.4.4. Configuring Interrupts
The Host Controller in ISP1161x has two groups of interrupt sources. The first group includes interrupts generated by
USB events, such as Start-of-Frame, scheduling overrun and root hub status change. The occurrence of these interrupts
is controlled by the combination of the HcInterruptEnable and HcInterruptDisable registers, and the status of each of these
interrupts is indicated in the HcInterruptStatus register.

Table 5-7: HcInterruptEnable Register: Bit Allocation
READ INDEX—04H; WRITE INDEX—84H

Connectivity 28

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

The second group includes interrupts that occur as a result of changes in the state of the Host Controller. For example,
the suspension of the Host Controller generates an interrupt. Also, any combination of interrupts in the first group is a
source for an interrupt included in the second group. Figure 5-12 shows the relationship between these two groups of
interrupts.

Figure 5-12: ISP1161x Host Controller Interrupt Logic
As can be seen in the block diagram, the propagation of the first group of interrupts that can be enabled via the
HcInterruptEnable register is controlled by the OPRInterruptEnable bit in the HcµPInterruptEnable register (see Table 5-8).

Table 5-8: HcµPInterruptEnable Register: Bit Allocation
READ INDEX—25H; WRITE INDEX—A5H

When initializing the interrupts available in the Host Controller of ISP1161x, it is recommended that you initialize the
interrupts in the HcµPinterruptEnable register before initializing the interrupts in the HcInterruptEnable register. The
following code segment initializes all the interrupts in the Host Controller.

#define OPR_Reg 0x0010
#define SOFITLInt 0x0001

// Clear all pending interrupts.
WRITE_16BIT_REG(Hc•PInterrupt, 0xFFFF);

Connectivity 29

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

// Enable the OPR and SOF interrupts.
WRITE_16BIT_REG(HcdPInterruptEnable, OPR_Reg | SOFITLInt);

// Disable all USB specific interrupts.
WRITE_32BIT_REG(HcInterruptDisable, 0x0000007F);

#define SF 0x00000004
#define RHSC 0x00000040
#define MIE 0x80000000

// Enable the SOF and Master Interrupts.
WRITE_32BIT_REG(HcInterruptEnable, SF | RHSC | MIE);

Figure 5-13: Code Example for Initializing the Host Controller Interrupt

To clear pending USB specific interrupts (that is, the first group of interrupts), a value of 1 must be written to the
interrupt bit position to be cleared in the HcInterruptStatus register (see Table 5-9). For example, the following code clears
the root hub status change (RHSC) interrupt bit:
WRITE_32BIT_REG(HcInterruptStatus, RHSC);

Table 5-9: HcInterruptStatus Register: Bit Allocation
READ INDEX—03H; WRITE INDEX—83H

To clear pending Host Controller related interrupts (that is, the second group of interrupts), a value of 1 must be written
to the interrupt bit position to be cleared in the HcµPInterrupt register (see Table 5-10). For example, the following code
clears the OPR_Reg interrupt:
WRITE_16BIT_REG(Hc•PInterrupt, OPR_Reg);

Table 5-10: HcµPInterrupt Register: Bit Allocation
READ INDEX—24H; WRITE INDEX—A4H

Connectivity 30

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Note: Since ISP1161x is a frame-based slave Host Controller, the microprocessor must update Philips Transfer
Descriptors (PTD) in the ATL and/or ITL buffers for every frame. It is strongly recommended that the SOFITLInt
interrupt (enabled in the HcµPInterruptEnable register) in conjunction with the SF interrupt (enabled in the
HcInterruptEnable register) be used as a means to update PTDs in the ATL and ITL buffers. When the SOFITLInt
interrupt is used, the ATLInt interrupt must be disabled because enabling the ATLInt interrupt results in two interrupts
occurring in every frame.

5.4.5. Configuring the HcFmInterval Register
The recommended values for FrameInterval (FI) and FSLargestDataPacket (FSMPS) are 0x2EDF and 0x2778,
respectively. Therefore, the following code will write these two values to the register.
WRITE_32BIT_REG(HcFmInterval, 0x2EDF | (0x2778 << 16));

Table 5-11 HcFmInterval Register: Bit Allocation
READ INDEX—0DH; WRITE INDEX—8DH

5.4.6. Configuring Root Hub Registers
At the time of initialization, the following three root hub specific registers must be initialized: HcRhDescriptorA,
HcRhDescriptorB and HcRhStatus.

In the HcRhDescriptorA register (see Table 5-12), all bit fields except the DT bit are implementation specific (IS). For the
ISA-based ISP1161x evaluation board, the following bit fields must be initialized as given:

• The recommended value for the POTPGT (PowerOnToPowerGoodTime) field is 25, which gives 50 ms power-
on-to-power-good time.

• The OCPM (OverCurrentProtectionMode) bit must be set to logic 0 because the overcurrent status is reported
collectively for all downstream ports.

Connectivity 31

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Table 5-12: HcRhDescriptorA Register: Bit Allocation
READ INDEX—12H; WRITE INDEX—92H

The code example to initialize the HcRhDescriptorA register for the ISA-based ISP1161x evaluation board is given in
Figure 5-14.

#define POWER_ON_TO_POWER_GOOD_TIME 50
ULONG uData = 0;

uData = 0x00000200 ;

// Must use an even value.
uData |= ((POWER_ON_TO_POWER_GOOD_TIME / 2) << 24);

WRITE_32BIT_REG (HcRhDescriptorA, uData);

Figure 5-14: Code Example for Initializing the HcDescriptorA Register

With the HcRhDescriptorA register initialized, the LPSC (LocalPowerStatusChange) bit in the HcRhStatus register (see
Table 5-13) must be set to logic 1 to turn on power to all ports because the power switching mode is set to global
power-on in the HcRhDescriptorA register. All other bits in the HcRhStatus register are set to logic 0.

// LPSC <= 1
uData = 0x00010000

WRITE_32BIT_REG(HcRhStatus, uData);

Figure 5-15: Code Example for Initializing the HcRhStatus Register

Connectivity 32

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Table 5-13: HcRhStatus Register: Bit Allocation
READ INDEX—14H; WRITE INDEX—94H

For the ISA-based ISP1161x evaluation board, the PPCM field (see Table 5-14) must be set to logic 0 because the power
switching mode is global power-on and the DR field (see Table 5-14) must also be set to logic 0 because devices can be
detached from the root hub ports.

The code example to initialize the HcRhDescriptorB register is as follows:
WRITE_32BIT_WRITE(HcRhDescriptorB, 0x00000000);

Table 5-14: HcRhDescriptorB Register: Bit Allocation
READ INDEX—13H; WRITE INDEX—93H

5.4.7. Setting the ITL and ATL Buffer Lengths
The Host Controller in ISP1161x has 4 kbytes of internal FIFO buffer RAM that can be divided into the ATL and ITL
buffers by the HcATLBufferLength and HcITLBufferLength registers. The ITL buffer is further divided into the ITL0 and
ITL1 buffers of equal size, programmed in the HcITLBufferLength register, to form a ping pong structure. At minimum,
the ATL buffer must exist because the ATL buffer is used for the control, interrupt and Bulk transfers. The presence of

Connectivity 33

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

the ITL buffer is optional. The following code example sets the ATL buffer length to 2 KB and the ITL buffer length to
2 KB, which results in the ITL0 and ITL1 buffers being 1 KB each.

WRITE_16BIT_REG(HcITLBufferLength, 1024);
WRITE_16BIT_REG(HcATLBufferLength, 2048);

Figure 5-16: Code Example for Setting the ATL and ITL Buffer Lengths

5.4.8. Installing INT1 Interrupt Service Routine
If one or more interrupts occur in the Host Controller, the microprocessor is alerted of interrupts through the INT1 pin
in ISP1161x. The INT1 pin is usually connected to an interrupt controller through which the microprocessor receives an
interrupt from ISP1161x. In the ISA-based ISP1161x evaluation board, the INT1 pin is an input to the two-chip
cascaded 8259A programmable interrupt controller (PIC) in the PC motherboard. On the ISA-based ISP1161x
evaluation board, the INT1 pin is usually set to IRQ10. When the ISP1161x evaluation board is used in the PC
motherboard, the HCD must program the 8259A PIC so that the INT1 pin is connected to the IRQ10 channel in the
PIC. The following code example programs the cascaded PICs on the PC motherboard.

#define PIC1_OCW1 0x21 // ISA port address for operation control word 1 in the
// first PIC

#define PIC2_OCW1 0xA1 // ISA port address for operation control word 1 in the
// second PIC

void configurePIC (ULON uIrqLevel)
{
ULONG PICMaskBit[]={1, 2, 4, 8, 16, 32, 64, 128};
ULONG uData;
ULONG uIntPort;

// Set the mask bit for the corresponding IRQ level.
// Read the current mask bits from the operation control word 1 in PIC
// and set the mask bit for the IRQ level for INT1.
if (uIrqLevel < 8)
{

// If the IRQ level for INT1 is between IRQ0 and IRQ7
uData = (ULONG) inb(PIC1_OCW1);
uData |= PicMaskBit[uIntLevel];
outb(PIC1_OCW1, uData);

}
else
{ // If the IRQ level for INT1 is between IRQ8 and IRQ15

uData = (ULONG) inb(PIC2_OCW1);
uData |= PicMaskBit[uIrqLevel - 8];
outb(PIC2_OCW1, uData);

}

// Set the interrupt triggering mode to level triggering by setting the appropriate bit
// in the ELCR register in the PIC.
if (uIrqLevel < 8)

uIntPort = 0x4d0;
else
{

uIntPort = 0x4d1;
uIrqLevel -= 8;

}
uData = (ULONG) inb(uIntPort);

uData |= PicMaskBit[uIntLevel];
outb(uIntPort, uData);

}

Once the interrupt controller is properly configured, an interrupt service routine must be installed for the target interrupt
request level. The facility to connect an interrupt service routine to a particular interrupt request level is usually provided
by the host operating system. For example; in Linux®, the system call request_irq() is used to install an interrupt service
routine.

Connectivity 34

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

5.4.9. Setting the Host Controller to the Operational State
The next step in initializing the Host Controller is to set the Host Controller to the “operational” state from the “reset”
state. The transition from the “operational” state to the “reset” state causes the Host Controller to start generating Start-
of-Frame (SOF) at 1 ms intervals. The following code sets the Host Controller to the “operational” state.

uValue = READ_32BIT_REG(HcControl);

// When writing a new value to the HcControl register, the state of the other bits in the
// register must be preserved by writing 0 to the bits already set to logic 1 in the register.

uValue &= 0x000000C0;

// 10B in bits[7:6] => Operational state
uValue |= 0x00000080

WRITE_32BIT_REG (HcControl, uValue);

Figure 5-17: Code Example for Setting the Host Controller to the Operational State

5.4.10. Setting the Host Controller to Perform USB Enumeration
Upon setting the relevant registers as mentioned earlier, the Host Controller is ready to perform USB enumeration. For
more detailed information on USB enumeration, refer to the Universal Serial Bus Specification Revision 2.0 (full-speed).

The pseudocode is as follows.

// Performs enumeration of the USB device connected to ISP1161x //
if (HcRhPortStatus[i] & 0x00000001) // Detection of the connected device
{
wait_ms(100); // Wait at least 100 ms to allow completion of insertion
write_32bit_reg(HcRhPortStatus[i], 0x00000010); // Set port reset

wait_ms(10); // Wait for reset recovery time. Min is 10 ms.
port_enable(); // Set HcRh registers to enable USB ports

{
write_32bit_reg(HcRhPortStatus1,0x00000102); // Set Port1 PortEnableStatus and

// PortPowerStatus to ‘1’
write_32bit_reg(HcRhPortStatus2,0x00000102); // Set Port2 PortEnableStatus and

// PortPowerStatus to ‘1’
write_32bit_reg(HcRhDescriptorA,0x00000B01); // Set NumberDownstreamPort,

// OCProtection etc. to ‘1’
write_32bit_reg(HcRhDescriptorB,0x00000000); // Device removable and control

// by Global power switch
}

void set_address(old_addr, new_addr); // A unique device address has been assigned
{
// Send out first control Setup packet
make_control_ptd(cbuf_ptr, SETUP, 0, 0, 8, 0, old_addr);
send_control(cbuf_ptr,rb_ptr,0x0500,new_addr,0x0000,0x0000);

// Send out control Status packet
make_control_ptd(cbuf_ptr,IN,0,0,0,1,old_addr);

send_control(cbuf_ptr,rb_ptr,0x0000,0x0000,0x0000,0x0000); // Send zero-length packet to
// complete transfer

}
void set_config(int addr,int config) // Configure the device

{
// Send out first control Setup packet
make_control_ptd(cbuf_ptr,SETUP,0,0,8,0,addr);
send_control(cbuf_ptr,rb_ptr,0x0900,config,0x0000,0x0000);

// Send out control Status packet
make_control_ptd(cbuf_ptr,IN,0,0,0,1,addr);
send_control(cbuf_ptr,rb_ptr,0x0000,0x0000,0x0000,0x0000); // Send zero-length packet to

// complete transfer
}
}
//--
void make_control_ptd(unsigned int *rptr, char type_ptd,char last,char ep,unsigned int max,char
tog,char addr)
{
ptd2send.CompletetionCode=0x0; // Set Completion Code = 0000. No Errors.
ptd2send.active_bit=1; // Enable execution of transactions by the Host Controller.
ptd2send.toggle=tog;

Connectivity 35

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

ptd2send.ActualBytes=0; // Set to zero. This field is filled by the Host Controller to
// reflect how many bytes are sent or received.

ptd2send.endpoint=ep;
ptd2send.last_ptd=1;
ptd2send.speed=port1speed; // Indicates speed of the endpoint
ptd2send.MaxPacketSize=max;
ptd2send.TotalBytes=max;
ptd2send.pid= type_ptd;
ptd2send.format=0;
ptd2send.fm=0;
ptd2send.FunctionAddress=addr;

c_ptd[0]= (ptd2send.CompletetionCode &0x0000)<<12
|(ptd2send.active_bit &0x0001)<<11
|(ptd2send.toggle &0x0001)<<10 // Shift bit 10 bits to the left
|(ptd2send.ActualBytes &0x03FF); // 10 bits of ActualBytes in bytes 0 and 1

// of PTD
c_ptd[1]= (ptd2send.endpoint &0x000F)<<12

|(ptd2send.last_ptd &0x0001)<<11
|(ptd2send.speed &0x0001)<<10
|(ptd2send.MaxPacketSize&0x03FF); // 10 bits of MaxPacketSize in bytes 1 and 2

// of PTD

c_ptd[2]= (0x0000 &0x000F)<<12
|(ptd2send.pid &0x0003)<<10
|(ptd2send.TotalSize &0x03FF); // 10 bits of TotalSize in bytes 3

// and 4 of PTD

c_ptd[3]= (ptd2send.fm &0x00FF)<<8
|(ptd2send.format &0x0001)<<7
|(ptd2send.FunctionAddress &0x007F);

}
//--
void send_control(unsigned int *a_ptr,unsigned int *r_ptr,unsigned int d0,unsigned int
d1,unsigned int d2,unsigned int d3)
{
abuf[0]=*(a_ptr+0);
abuf[1]=*(a_ptr+1);
abuf[2]=*(a_ptr+2);
abuf[3]=*(a_ptr+3);
abuf[4]=d0;
abuf[5]=d1;
abuf[6]=d2;
abuf[7]=d3;
nptr=abuf;
write_atl(nptr,8); // Write 16 bytes
do
{
if(port1speed==1){read_atl(r_ptr, 8);} // Read 16 bytes
if(port1speed==0){read_atl(r_ptr,36);} // Read 72 bytes
active_bit=(*r_ptr)&(0x0800); // Check active bit. The Host Controller sets the

// bit to 0 after PTD is finished
active_bit=active_bit>>11;
cnt--;
pwait(wait_time);
}
while((cnt>2) && (active_bit!=0));
}
//--
void write_atl(unsigned int *a_ptr, unsigned int data_size)
{
write_register16(Com16_HcTransferCounter,data_size*2);
outport(g_1161_command_address,Com16_HcATLBufferPort|0x80);
cnt=0;
do
{
outport(g_1161_data_address,*(a_ptr+cnt));
cnt++;
}
while(cnt<(data_size));
}
//--
void read_atl(unsigned int *a_ptr, unsigned int data_size)
{
write_register16(Com16_HcTransferCounter,data_size*2);
outport(g_1161_command_address,Com16_HcATLBufferPort);
cnt=0;
do

Connectivity 36

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

{
*(a_ptr+cnt)=inport(g_1161_data_address);
cnt++;
}
while(cnt<(data_size));
}

5.5. Host Controller Driver Operation Flow
The Host Controller Driver (HCD) has two functions. First, the HCD builds PTDs in a certain data structure in the
system memory on being called by a higher-level component, such as the USB bus driver through its API functions.
Second, the SOFITLInt interrupt service routine moves any “done” PTDs from the ATL and/or ITL buffers into the
system memory and furthermore, moves pending PTDs from the system memory to the ATL and/or ITL buffers. The
SOFITLInt interrupt service routine is invoked once every frame because of the SOFITLInt interrupt (see Section
5.4.4). Once the ATL and/or ITL buffers are updated, the Host Controller hardware resumes processing of PTDs in the
two buffers when a new frame begins.

5.6. Accessing the ATL Buffer
The HCD can access the ATL buffer to update PTDs only when the Host Controller hardware stops scanning the
buffer. The hardware stops scanning the ATL buffer under the following two conditions:

• When all the PTDs in the ATL buffer are done (The active bit in the PTD header is set to logic 0.).

Or,

• When an ATLInt interrupt occurs; meaning that the ATL buffer scanning duration expires (FSMPS[14:0] has the
value of the duration). The FSMPS[14:0] duration is typically about 85% of the duration of a 1 ms frame.

5.6.1. Using SOFITLInt Versus ATLInt
If the ISP1161x Host Controller is used for only Bulk or interrupt or both devices, the programmer has the choice of
using either the SOFITLInt or ATLInt interrupt as an indication to access the ATL buffer. However, for isochronous
devices, the SOFITLInt interrupt must be used because the ATLInt interrupt cannot detect 1 ms frame boundaries.

It is, therefore, strongly recommended that you enable only the SOFITLInt interrupt when building a host stack that
supports all USB device types. Otherwise, there will be two interrupts—SOFITLInt and ATLInt—for every 1 ms frame.

The following timing diagram illustrates a flow of events in the context of the HCD and hardware when the ATLInt
interrupt is used.

Connectivity 37

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

SOF SOF SOF SOF

ATLInt

ATLInt

H/W scanning ATL
buffer

ISR running
(HCD accessing ATL)

H/W scanning ATL
buffer

HCD setting up PTDs HCD setting up PTDs

Figure 5-18: ATLInt Interrupt Flow

In the timing diagram in Figure 5-18, it is assumed that the hardware scans the ATL buffer until the FSMPS duration
expires. This means that the ATL buffer still has uncompleted PTDs when the FSMPS duration expires. The ATLInt
interrupt may occur sooner that the FSMPS duration time if PTDs in the ATL buffer get completed before the duration
time expires. When there are no more PTDs in the ATL buffer, the ATLInt interrupt does not occur.

As can be seen from the timing diagram in Figure 5-18, there will be some time for ISR to run before the next frame
starts. If ISR is done and the ATL buffer is updated with new PTDs before the next frame begins, USB transactions can
occur in every frame. However, if the execution of ISR and setting up of new PTDs in the ATL buffer cross into the
next frame, hardware waits until a new full frame begins. The timing diagram in Figure 5-19 illustrates the case in which
USB transactions occur in every frame.

Connectivity 38

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

SOF SOF
ATLInt

H/W scanning ATL
buffer

ISR runs
and ATL buffer

updated

H/W scanning ATL
buffer again

Figure 5-19: Running the Host Controller with the ATLInt Interrupt

An undesirable side effect of using the ATLInt interrupt to access the ATL buffer is that the ATLInt interrupt may
interrupt the microprocessor too many times in short intervals, if the ATL buffer consistently contains PTDs that cause
short USB transactions only.

Whereas using the SOFITLInt interrupt allows USB transactions to occur in every frame, using the SOFITLInt interrupt
implies that USB transaction occur in every other frame, in which one frame is consumed by ISR. This is illustrated in
the timing diagram in Figure 5-20.

SOF SOF

ATLInt

H/W scanning ATL
buffer

ISR runs and
ATL buffer updated

H/W scanning ATL
buffer again

SOF

Figure 5-20: Running the Host Controller with the SOFITLInt Interrupt

Connectivity 39

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

5.6.2. Starting Scan of the ATL Buffer by Hardware
The Host Controller hardware starts scanning the ATL buffer when the HCD writes data to the ATL buffer via the
HcATLBufferPort register for the number of bytes specified in the HcTransferCounter register. When the write is
completed, the ATLBufferFull bit in the HcBufferStatus register is set to logic 1. The transition of the ATLBufferFull bit
from logic 0 to logic 1 causes the hardware to start scanning the ATL buffer to process PTDs in the ATL buffer. When
the ATLInt interrupt occurs, meaning that the hardware stops scanning the ATL buffer, the ATLBufferDone bit in the
HcBufferStatus register is set to logic 1, which is an indication to the HCD that it can now access the ATL buffer.

The following pseudocode illustrates write to the ATL buffer.

void writeToATLBuffer (char * pbuffer, ULONG uTotalBytes)
{
ULONG uTotalDoubleWord;
ULONG * puBuffer;
ULONG uData1, uData2, uIndex;

// Write the length of write to the HcTransferCounter register in number of bytes.
WRITE_32BIT_REG(HcTransferCounter, uTotalBytes)

// Access data four bytes at a time and typecast the buffer pointer accordingly.
uTotalDoubleWord = uTotalBytes >> 2;
puBuffer = (ULONG *) pbuffer;

// Send the write index of the HcATLBufferPort register to the Host Controller.
outw(COMMAND_PORT, 0xC1)

// Delay for 3 system ticks.
iodelay()
iodelay()
iodelay()

// Critical section. Disable all interrupts */
DISABLE_INTERRUPTS();

for (uIndex=0; uIndex < uTotalDoubleWord; ++uIndex)
{

// Get lower and higher half words.
uData1 = puBuffer[uIndex] & 0x0000FFFF;
uData2 = puBuffer[uIndex] & 0xFFFF0000;

// Write lower-half word followed by higher-half word to the ATL buffer
outw(DATA_PORT, uData1);
outw(DATA_PORT, uData2);

iodelay();
}

// Out of the critical section. Allow interrupts to happen again.
ENABLE_INTERRUPTS();

}

Figure 5-21: Code Example for Writing to the ATL Buffer

The following pseudocode illustrates read from the ATL buffer.

void readFromATLBuffer (char * pbuffer, ULONG uTotalBytes)
{
ULONG uTotalDoubleWord;
ULONG * puBuffer;
ULONG uData1, uData2, uIndex;

// Write the length of read to the HcTransferCounter register in number of bytes.
WRITE_32BIT_REG(HcTransferCounter, uTotalBytes)

// Access data four bytes at a time and typecast the buffer pointer accordingly.
uTotalDoubleWord = uTotalBytes >> 2;
puBuffer = (ULONG *) pbuffer;

// Send the read index of the HcATLBufferPort register to the Host Controller.
outw(COMMAND_PORT, 0x41)

// Delay for 3 system ticks.

Connectivity 40

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

iodelay()
iodelay()
iodelay()

// Critical section. Disable all interrupts */
DISABLE_INTERRUPTS();

for (uIndex=0; uIndex < uTotalDoubleWord; ++uIndex)
{

// Read lower- and higher-half words from the ATL buffer.
uData1 =inw(DATA_PORT);
uData2 =inw(DATA_PORT);

// Store data into the doubleword buffer.
puBuffer[uIndex] = (uData1 & 0x0000FFFF) | ((uData2 & 0xFFFF0000) << 16);

iodelay();
}

// Out of critical section. Allow interrupts to happen again.
ENABLE_INTERRUPTS();

}

Figure 5-22: Code Example for Reading from the ATL Buffer

5.7. Accessing the ITL Buffer
The ITL buffer can be accessed by the HCD at any time because of the ping pong buffer structure of the ITL buffer.
While the ping buffer is being accessed by the HCD, the Host Controller hardware can access the pong buffer and vice-
versa. The timing diagram in Figure 5-23 illustrates how the ping pong buffer of the ITL buffer is accessed.

SOF SOF SOF

HC accesses
ITL0

HCD reads ITL1
and sets up ITL1

HC accesses
ITL1

SOF

HCD reads ITL0
and sets up ITL0

HCD reads ITL1
and sets up ITL1

HC accesses
ITL0

SOFITLInt SOFITLInt SOFITLIntSOFITLInt

Figure 5-23: ITL Buffer Access Flow

The following code example shows how to write data from the system memory to the ITL buffer.

void writeToITLBuffer (char * pbuffer, ULONG uTotalBytes)
{
ULONG uTotalDoubleWord;
ULONG * puBuffer;
ULONG uData1, uData2, uIndex;

// Write the length of write to the HcTransferCounter register in number of bytes.
WRITE_32BIT_REG(HcTransferCounter, uTotalBytes)

Connectivity 41

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

// Access data four bytes at a time and typecast the buffer pointer accordingly.
uTotalDoubleWord = uTotalBytes >> 2;
puBuffer = (ULONG *) pbuffer;

// Send the write index of the HcITLBufferPort register to the Host Controller.
outw(COMMAND_PORT, 0xC0)

// Critical section. Disable all interrupts */
DISABLE_INTERRUPTS();

for (uIndex=0; uIndex < uTotalDoubleWord; ++uIndex)
{

// Get lower- and higher-half words.
uData1 = puBuffer[uIndex] & 0x0000FFFF;
uData2 = puBuffer[uIndex] & 0xFFFF0000;

// Write lower-half word followed by higher-half word to the ITL buffer.
outw(DATA_PORT, uData1);
outw(DATA_PORT, uData2);

}

// Out of critical section. Allow interrupts to happen again.
ENABLE_INTERRUPTS();

}

Figure 5-24: Code Example for Writing to the ITL Buffer

The code example in Figure 5-25 shows how to read data from the ITL buffer to the system memory.

void readFromITLBuffer (char * pbuffer, ULONG uTotalBytes)
{
ULONG uTotalDoubleWord;
ULONG * puBuffer;
ULONG uData1, uData2, uIndex;

// Write the length of read to the HcTransferCounter register in number of bytes.
WRITE_32BIT_REG(HcTransferCounter, uTotalBytes)

// Access data four bytes at a time and typecast the buffer pointer accordingly.
uTotalDoubleWord = uTotalBytes >> 2;
puBuffer = (ULONG *) pbuffer;

// Send the read index of the HcITLBufferPort register to the Host Controller.
outw(COMMAND_PORT, 0x40)

// Critical section. Disable all interrupts */
DISABLE_INTERRUPTS();

for (uIndex=0; uIndex < uTotalDoubleWord; ++uIndex)
{

// Read lower- and higher-half words from the ITL buffer.
uData1 =inw(DATA_PORT);
uData2 =inw(DATA_PORT);

// Store data into the doubleword buffer.
puBuffer[uIndex] = (uData1 & 0x0000FFFF) | ((uData2 & 0xFFFF0000) << 16);

}

// Out of critical section. Allow interrupts to happen again.
ENABLE_INTERRUPTS();

}

Figure 5-25: Code Example for Reading from the ITL Buffer

5.8. Flowchart of the Host Controller in the Operational Mode
Once set in the operational mode, the Host Controller goes into a series of steps as shown in the flowchart in . The ITL
buffer is processed first, followed by the interrupt and the ATL buffer.

Connectivity 42

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

W a i t f o r S O F

S O F R e a c h e d ?

Y E S

W h i c h I T L ?

P r o c e s s I S O _ A P r o c e s s I S O _ B

I T L 0 I T L 1

S c h e d u l e
O v e r r u n ?

Y E S

N O

P r o c e s s A T L P T D s

E O F T im in g
R e a c h e d ?

Y E S

P r o c e s s I n t e r r u p t P T D

Figure 5-26: Host Controller in the Operational State Flow Chart

5.9. Setting Up PTDs for Transfers
PTDs for the control, Bulk and interrupt transfers are placed in the ATL buffer, and PTDs for the isochronous transfer
are placed in the ITL buffer. In the ATL buffer, a combination of the control, Bulk and interrupt transfer PTDs can be
placed in the ATL buffer destined for multiple endpoints in the same or different devices. In the ITL buffer, there can
be multiple PTDs placed in the buffer for different isochronous endpoints in the same or different devices, but there
must be only one PTD placed in the buffer for the same isochronous endpoint. If there happens to be more than one
PTD for the same endpoint, the Host Controller hardware will send the same number of isochronous packets as that of
PTDs to the same endpoint. This is a violation of the USB specification that requires one isochronous packet per frame.
Since there is no hardware checking, the HCD must ensure that there is only one PTD for the same endpoint in the ITL
buffer. The 8-byte PTD header fields are shown in Figure 5-27.

Connectivity 43

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 44

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 45

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Figure 5-27: PTD Header Fields

5.9.1. Control Transfer
Control transfers require extra care by the HCD because a control transfer has two or three transaction stages—Setup,
Data and Status—in which each stage must be completed in order. PTDs for the Setup, Data and Status stages cannot
be placed in the ATL buffer in the same USB frame. This is because the ISP1161x Host Controller is a frame-based
Host Controller, which means the Host Controller hardware tries to process as many PTDs as possible in the ATL
buffer during the allotted time in a single frame. The HCD must check for the completion of the PTD for the current
transaction stage before placing a PTD for the next transaction in an ensuing frame. Figure 5-29 illustrates the PTD flow
for a control transfer.

PTD for Setup Stage

ATL Buffer

Toggle = DATA0
MaxPacketSize = 64
EndpointNumber = 0
LastPTD = 1
Speed = 0
TotalBytes = 8
DirectionPID = SETUP
Format = 0
FunctionAddress = 1

PTD for Data Stage

ATL Buffer

Toggle = DATA1
MaxPacketSize = 64
EndpointNumber = 0
LastPTD = 1
Speed = 0
TotalBytes = 10
DirectionPID = OUT/IN
Format = 0
FunctionAddress = 1

PTD for Status Stage

ATL Buffer

Toggle = DATA1
MaxPacketSize = 64
EndpointNumber = 0
LastPTD = 1
Speed = 0
TotalBytes = 0
DirectionPID = IN/OUT
Format = 0
FunctionAddress = 1

Frame N Frame N + 2 Frame N + 4

• The HCD is assumed to place only one PTD in the ATL buffer for each transaction stage (LastPTD = 1).
• Device assumption:

• 64-byte control endpoint
• Full speed
• Device address is 1
• Data stage has 10-byte data

Figure 5-28: PTD Flow for the Control Transfer

Connectivity 46

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

In the frame N+1, the HCD will process the completed PTD for the Setup stage transaction. The HCD will process the
completed PTD for the Data stage transaction in the frame N+3 (see Figure 5-28). This scenario is valid when the
SOFITLInt interrupt is used as an indication to process the ATL buffer at the 1 ms interval. A control transfer may omit
the Data stage transaction.

5.9.2. Bulk, Interrupt and Isochronous Transfers
DirectionPID is either IN or OUT for these transfers. TotalBytes may be larger than the length of an intended endpoint.
In this case, the Host Controller hardware automatically sends an IN or OUT token preceding each max-packet-sized
data packet with the correct data toggle bit for each data packet. The HCD must take care of the setting of the data
toggle bit in the ensuing PTDs. The Host Controller hardware updates the data toggle bit field in the PTD only when
the data packet is delivered successfully. Therefore, when the HCD retires an erroneous data packet, the HCD must take
into account the fact that the data toggle bit field for the erroneous packet was left unchanged.
Figure 5-29 illustrates the setting of the data toggle bit field across multiple PTDs.

Figure 5-29: Data Toggle Bit Setting Example Across Multiple PTDs

The example above assumes the Bulk OUT endpoint size to 64 bytes. The 1st PTD has 130 bytes, and the 2nd PTD has
64 bytes to transfer to the device addressed 1. The 1st PTD will cause the Host Controller hardware to generate a total of
three packets and the hardware will generate one packet from the 2nd PTD as shown in Figure 5-30.

Toggle = DATA1
MaxPacketSize = 64
EndpointNumber = 1
LastPTD = 1
Speed = 0
TotalBytes = 64
DirectionPID = OUT
Format = 0
FunctionAddress = 1

1st PTD

2nd PTD

ATL Buffer

Toggle = DATA0
MaxPacketSize = 64
EndpointNumber = 1
LastPTD = 0
Speed = 0
TotalBytes = 130
DirectionPID = OUT
Format = 0
FunctionAddress = 1

Connectivity 47

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

OUT data packet (DATA0) OUT data packet (DATA1) OUT data packet (DATA0) OUT data packet (DATA1)

From 1st PTD From 2nd PTD

Figure 5-30: Data Toggle Bit Setting in Multiple PTD Data Packets
As shown in Figure 5-30 , the data toggle bit field must be set to DATA1 in the 2nd PTD.

5.10. Data Structures for List Processing
Before the HCD copies PTDs from the system memory to the ATL or ITL buffer, the HCD must build and keep track
of PTDs through a collection of data structures. Normally, the responsibility for keeping track of the devices connected
to a Host Controller lies with the bus driver. At any given point in time, the bus driver must have an understanding of
what devices remain connected, what device is being disconnected and what device is being connected. Retaining this
information requires elaborate data structures. Descriptions of these data structures will not be covered in this document
because these are beyond the scope of the goal of this document.

The responsibility of the HCD in comparison to the bus driver is to keep track of all endpoints in all the connected
devices with the attributes of each endpoint, such as the endpoint maximum packet size, the endpoint address and the
device address to which an endpoint belongs. In addition, the HCD must manage the creation of new PTDs for each
endpoint and the processing of the PTDs that have been completed. Employing an efficient architecture of data
structures is the key to the speedy operation of a Host Controller.

One example of such a data structure would be something similar to the data structure used in the implementation of
the OHCI Host Controller [Open Host Controller Interface Specification for USB, Release: 1.0a available at www.usb.org]. The
data structure is composed of three endpoint lists (control endpoint, Bulk endpoint and interrupt endpoint), a PTD list
for each endpoint and a “Done Queue” list. The interrupt endpoint list takes on a different structure as compared to the
control and Bulk endpoint lists, which takes the form of a tree structure.

Each list is pointed by a global pointer variable in the absence of any hardware register that can hold the address of the
first Endpoint (EP) queue head in the list (see Figure 5-31). Each EP queue header points to a PTD list. A PTD list
holds PTDs waiting to be processed by the Host Controller. PTDs are moved in the ATL buffer—in the control, Bulk
and interrupt transfers—by the HCD. Once PTDs are placed in the ATL buffer, the Host Controller hardware
processes the PTDs in the next frame.

Head Ptr ED

PTD

ED ED ED

PTD

PTD

PTD PTDPTD

PTD

Figure 5-31: Typical List Structure

Connectivity 48

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

In te rru p t
In te rru p t

In te rru p t
. . .

In te rru p t

D o n e Q u eu e

. . .

. . .

In te rru p t E P
H ea d er P tr

C o n tro l E P
H e ad er P tr

B u lk E P
H e ad er P tr

D o n e Q u eu e
H e ad er P tr

Figure 5-32: List Processing Data Structure

For more details on the algorithm for processing interrupt transfers; refer to Open Host Controller Interface Specification for
USB, Release: 1.0a.

5.11. Error Handling
The Host Controller hardware reports any error that occurs during the execution of a PTD via the CompletionCode[3:0]
field in the PTD. There are a total of 11 possible errors that can occur. Of the 11 possible errors, all except one error—
data underrun error—are fatal errors that cause the USB transaction to fail. The following table lists these errors, the
causes for these errors in an OUT transaction and the treatment of these errors by the Host Controller in an IN
transaction.

Table 5-15: USB Transaction Error Codes
Fatal Errors Error Code IN Token OUT Token
ERROR_CRC 01 No ACK sent Not applicable
ERROR_Bitstuffing 02 No ACK sent Not applicable
ERROR_DatatTogglingMismatch 03 ACK sent Not applicable
ERROR_Stall 04 No ACK sent The host received Stall from the device.
ERROR_DeviceNotResponding 05 No ACK sent The host did not receive a handshake reply

within 18-bit time, or a bad SYNC pulse.
ERROR_PIDCheckFailure 06 No ACK sent Not applicable
ERROR_UnExpectedPID 07 No ACK sent Corrupted ACK, STALL or NAK
ERROR_DataOverRun 08 NAK sent Not applicable
Non-Fatal Error (Warning)
ERROR_DataUnderRun 09 ACK sent Not applicable
ERROR_BufferOverrun 0C — —
ERROR_BufferUnderrun 0D — —
For all errors, the data toggle bit is still toggled and updated by the Host Controller hardware. The HCD must take the
state of the data toggle bit if and when it retries the failed PTD. This is because the data toggle bit is changed in spite of
an error.

Connectivity 49

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

For more details on error handling, refer to the Software section of the ISP1161x Frequently Asked Questions
document.

6. Programming the Device Controller of ISP1161x
The Device Controller (DC) of ISP1161x is a core based on Philips ISP1181 Device Controller, which is a full-speed
USB interface device with up to 14 configurable endpoints. You can access the Device Controller of ISP1161x via the
PIO mode or DMA transfer with up to 16-bytes per cycle. It has 2462 bytes of dedicated internal FIFO memory. The
type and FIFO size of each endpoint can be individually configured, depending on the required packet size. The
isochronous and Bulk endpoints are double-buffered for increased data throughput.

The Device Controller of ISP1161x can implement peripheral functions, such as printers, scanners, external mass
storage (Zip® drive) devices and digital still cameras, to transfer data to and from the PC host. The system CPUs in
these peripherals are extremely busy handling many tasks, such as device control, data and image processing. The
firmware of the Device Controller is designed to be fully interrupt-driven. While the system CPU is doing its foreground
task, the USB transfer is handled in the background. This assures best transfer rate and better software structure, and
also simplifies programming and debugging.

The description on programming the Device Controller of ISP1161x is based on the firmware code of the ISP1161x ISA
evaluation kit. The operating system used is DOS. Therefore, the Hardware Abstraction layer focuses on the ISA bus
access.

6.1. Firmware Structure of the Device Controller
The firmware for the evaluation board consists of two major portions: the processing of information and the interrupt
service routine. The Hardware Abstraction layer just moves data from hardware to memory space to be processed by the
Main Loop as shown in Figure 6-1.

Figure 6-1: Firmware Structure of the ISP1161x Device Controller

As can be seen in Figure 6-1, the firmware structure can be divided into the following six building blocks:

• Hardware Abstraction Layer—HAL4SYS.C
• Hardware Abstraction Layer—HAL4D13.C
• Interrupt Service Routine—ISR.C
• Protocol Layer—CHAP_9.C
• Protocol Layer—D13BUS.C
• Main Loop—MAINLOOP.C.

Processing of flags, handling of USB
requests and initialization of the

device, as well as transfer of data.
(MAINLOOP.C, CHAP_9.C,

D13BUS.C, HAL4SYS.C)

Hardware
Abstraction layer

(HAL4D13.C

Interrupt handling and setting of
flags. (ISR.C)

Connectivity 50

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

6.1.1. Hardware Abstraction Layer—HAL4SYS.C
This is the lowest-layer code in the firmware that performs hardware-dependent I/O access of the Device Controller of
ISP1161x, as well as the evaluation board hardware. When porting the firmware to other CPU platforms, this part of the
code always needs modifications or additions.

6.1.2. Hardware Abstraction Layer—HAL4D13.C
To further simplify programming with the Device Controller of ISP1161x, the firmware defines a set of command
interfaces that encapsulate all the functions used to access the Device Controller of ISP1161x. When porting the
firmware to other operation systems, this portion of the code must be modified.

6.1.3. Interrupt Service Routine—ISR.C
This part of the code handles interrupt generated by the Device Controller of ISP1161x. It retrieves data from the
ISP1161x Device Controller's internal FIFO to CPU memory and sets up proper event flags to inform the Main Loop
program to process.

6.1.4. Protocol Layer—CHAP_9.C
This Protocol layer handles standard USB device request, which is defined in the Chapter 9 of USB Specification Rev.
2.0. The firmware implementation of the USB device request is described in more detail in Section 6.7.

6.1.5. Protocol Layer—D13BUS.C
This Protocol layer handles specific vendor requests. Examples are the Bulk transfer and the isochronous (ISO) transfer.

6.1.6. Main Loop—MAINLOOP.C
The Main Loop checks event flags and passes to appropriate the subroutine for further processing. It also contains the
code for human interface, such as the keyboard scan.

6.2. Porting the Firmware to Other CPU Platform
Table 6-1 shows the modifications that must be done to building blocks. There are two levels of porting. The first level
is the Standard Device Request, that is, USB Chapter 9 only, which is to allow the firmware to pass enumeration by
supporting standard USB requests. The second level is the full product development. This involves product-specific
firmware code, that is, Vendor Request.

Table 6-1: Building Blocks Modifications
File Name Chapter 9 Only Product Level
HAL4SYS.C Port to hardware specific Port to hardware specific
HAL4D13.C Port to hardware specific No change
ISR.C No change Add product specific processing to the

Generic and Main endpoints
CHAP_9.C No change Product specific USB descriptors
D13BUS.C No change Add vendor request supports, if necessary
MAINLOOP.C Depending on the CPU and the system, ports, timer

and interrupt initialization must be rewritten
Add product specific Main Loop processing

Connectivity 51

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

6.3. Developing the Firmware in the Polling Mode
To develop the firmware in the polling mode, add the following lines of code to the Main Loop:

if(interrupt_pin_low)
 fn_usb_isr();

Normally, Interrupt Service Routine (ISR) is initiated by the hardware. In the polling mode, the Main Loop detects the
status of the interrupt pin, and invokes ISR, if necessary.

6.4. Hardware Abstraction Layer

6.4.1. Hardware Abstraction Layer for the System
This layer contains the lowest-layer functions that must be changed on different CPU platforms. The function
prototypes in the Hardware Abstraction layer for the system are as follows:

Hal4Sys_AcquireTimer0(void);
Hal4Sys_ReleaseTimer0(void);
interrupt Hal4Sys_Isr4Timer(void);

void Hal4Sys_AcquireKeypad(void);
void Hal4Sys_ReleaseKeypad(void);

void Hal4Sys_WaitinUS(IN OUT ULONG time);
void Hal4Sys_WaitinMS(IN OUT ULONG time);

void Hal4Sys_ControlLEDPattern(UCHAR LEDpattern);
void Hal4Sys_ControlD13Interrupt(BOOLEAN InterruptEN);

For example, the subroutine to acquire the system timer is as follows:

void Hal4Sys_AcquireTimer0(void)
{

if(bD13flags.bits.verbose)
printf("enter Hal4Sys_AcquireTimer0\n");

Hal4Sys_OldIsr4Timer = getvect(0x8);
setvect(0x8, Hal4Sys_Isr4Timer);

if(bD13flags.bits.verbose)
printf("exit Hal4Sys_AcquireTimer0\n");

}

Connectivity 52

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

6.4.2. Hardware Abstraction Layer for the Device Controller of ISP1161x
The following functions are defined as the Device Controller command interface of ISP1161x to simplify the device
programming. These are implementations of the ISP1161x Device Controller command set, which is defined in the
ISP1161x datasheet.

Hal4D13_SetEndpointConfig(UCHAR bEPConfig, UCHAR bEPIndex);
Hal4D13_GetEndpointConfig(UCHAR bEPIndex);

Hal4D13_SetAddressEnable(UCHAR bAddress, UCHAR bEnable);
Hal4D13_GetAddress(void);

Hal4D13_SetMode(UCHAR bMode);
Hal4D13_GetMode(void);

Hal4D13_SetDevConfig(USHORT wDevCnfg);
Hal4D13_GetDevConfig(void);

Hal4D13_SetIntEnable(ULONG dIntEn);
Hal4D13_GetIntEnable(void);

Hal4D13_SetDMAConfig(USHORT wDMAConfig);
Hal4D13_GetDMAConfig(void);
Hal4D13_SetDMACounter(USHORT wDMACounter);
Hal4D13_GetDMACounter(void);

Hal4D13_ResetDevice(void);

Hal4D13_WriteEndpoint(UCHAR bEPIndex, UCHAR * buf, USHORT len);
Hal4D13_ReadEndpoint(UCHAR bEPIndex, UCHAR * buf, USHORT len);

Hal4D13_SetEndpointStatus(UCHAR bEPIndex, UCHAR bStalled);
Hal4D13_GetEndpointStatusWInteruptClear(UCHAR bEPIndex);
Hal4D13_ValidBuffer(UCHAR bEPIndex);
Hal4D13_ClearBuffer(UCHAR bEPIndex);

Hal4D13_AcknowledgeSETUP(void);

Hal4D13_GetErrorCode(UCHAR bEPIndex);
Hal4D13_LockDevice(UCHAR bTrue);

Hal4D13_ReadChipID(void);
Hal4D13_ReadCurrentFrameNumber(void);

Hal4D13_ReadInterruptRegister(void);

Connectivity 53

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

6.5. Interrupt Service Routine
The Device Controller of the ISP1161x firmware is fully interrupt-driven. The flowchart of Interrupt Service Routine
(ISR) is given in Figure 6-2.

Figure 6-2: Flowchart of ISR

.

.

.

ISR

ISR Entry

Read ISP1161 Device Controller Interrupt
Register Reset Idle Timer (see Figure 6-4)

Bus Reset?

Suspend
Change?

DMA EOT?

Control IN Done?

Control OUT
Done?

Endpoint 01
Done

Endpoint 02
Done

Endpoint 03
Done

Endpoint 0E
Done

Send EOI to Interrupt Controller

End of ISR

No

No

No

No

No

No

No

No

No

Set Bus Reset Flag Yes

Set Suspend Changed Flag

DMA EOT Handler Subroutine

Ep00TxDone Handler Subroutine

Ep00RxDone Handler Subroutine

Ep01Done Handler Subroutine

Ep02Done Handler Subroutine

Ep03Done Handler Subroutine

Ep0EDone Handler Subroutine

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

SOF SOF Handler SubroutineYes

No

Connectivity 54

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Table 6-2: Interrupt Register: Bit Allocation

Note: A logic 1 indicates that an interrupt occurred on the respective bit.

Figure 6-3 contains the pseudocode of a typical Interrupt Service Routine.

void fn_usb_isr(void)
{

ULONG i_st;

i_st = ReadInterruptRegister(); /* See Figure 6-4 on reading the Interrupt register */
if(i_st != 0) {

if(i_st & D13REG_INTSRC_BUSRESET)
Isr_BusReset();

else if(i_st & D13REG_INTSRC_SUSPEND)
Isr_SuspendChange(); /* This function sets suspend changed flag */

else if(i_st & D13REG_INTSRC_EOT)
Isr_DmaEot(); /* DMA EOT handler subroutine */

else if(i_st & (D13REG_INTSRC_SOF|D13REG_INTSRC_PSEUDO_SOF))
Isr_SOF(); /* SOF handler subroutine */

else
{

if(i_st & D13REG_INTSRC_EP0IN)
Isr_Ep00TxDone(); /* Ep00TxDone handler subroutine */

/* (control IN EP) */
if(i_st & D13REG_INTSRC_EP0OUT)

Isr_Ep00RxDone(); /* Ep00RxDone handler subroutine */
/* (control OUT EP) */

if(i_st & D13REG_INTSRC_EP01)
Isr_Ep01Done(); /* Ep01Done handler subroutine */

if(i_st & D13REG_INTSRC_EP02)
Isr_Ep02Done(); /* Ep02Done handler subroutine */

if(i_st & D13REG_INTSRC_EP03)
Isr_Ep03Done(); /* Ep03Done handler subroutine */

/* Add interrupts as and when needed */

if(i_st & D13REG_INTSRC_EP0E)
Isr_Ep0EDone(); /* Ep0EDone handler subroutine */

}
}

}
Figure 6-3: Code Example of a Typical ISR

Connectivity 55

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

A pseudocode to read the Interrupt register is given in Figure 6-4.

ULONG ReadInterruptRegister(void)
{

ULONG i = 0;
outport(D13_COMMAND_PORT, Read_Int_Register); /* Read the Read_Int_Register = 0xC0 */
i = inport(D13_DATA_PORT); /* Read the lower word */
i += (((ULONG)inport(D13_DATA_PORT)) << 16); /* OR the lower word with the upper */

/* word to form a ULONG variable */
return i; /* Return the Interrupt register */

}

Figure 6-4: Code Example to Read the Interrupt Register

At the entrance of ISR, the firmware uses the Read Interrupt register to decide the source of the interrupt and then to
dispatch it to the appropriate subroutines for processing. ISR communicates with the foreground Main Loop through
event flags "D13FLAGS" and data buffers "CONTROL_XFER".

typedef union _D13FLAGS
{

struct _D13FSM_FLAGS
{

IRQL_1 UCHAR bus_reset : 1;
IRQL_1 UCHAR suspend : 1;
IRQL_1 UCHAR DCP_state : 4;
IRQL_1 UCHAR setup_dma : 1;
IRQL_1 UCHAR timer : 1;

} bits;
ULONG value;

} D13FLAGS;

typedef struct _CONTROL_XFER
{

IRQL_1 DEVICE_REQUEST DeviceRequest;
IRQL_1 USHORT wLength;
IRQL_1 USHORT wCount;
IRQL_1 ADDRESS Addr;
IRQL_1 UCHAR dataBuffer[MAX_CONTROLDATA_SIZE];

} CONTROL_XFER, * PCONTROL_XFER;

Where,
typedef struct _device_request
{

UCHAR bmRequestType;
UCHAR bRequest;
USHORT wValue;
USHORT wIndex;
USHORT wLength;

} DEVICE_REQUEST;

Figure 6-5: Control Flags

The task splitting between ISR and the Main Loop is that ISR collects data from the internal buffer of the ISP1161x
Device Controller and moves the data packet to a data buffer. When ISR has collected enough data, it informs the Main
Loop that data is ready for processing. The Main Loop processes the data from the data buffer.

The following sections explain the various event handlers.

6.5.1. Bus Reset
The bus reset does not require any special processing within ISR. ISR sets the “bus_reset” flag in D13FLAGS and then
exits.

Connectivity 56

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

6.5.2. Suspend Change
Suspend does not require special processing within ISR. ISR sets the suspend flag in D13FLAGS and then exits.

6.5.3. EOT Handler
For information on EOT handler, contact the Philips Semiconductors’ support team at wired.support@philips.com

6.5.4. Control Endpoint Handler

Figure 6-6: State Machine of the Control Transfer

The control transfer always begins with the Setup stage and is followed by an optional Data stage. The Data stage can be
one or more IN or OUT transactions. Finally, it ends with the Status stage, that is, HANDSHAKE. Figure 6-6 shows
the various states of transitions on control endpoints. The firmware uses these five states to handle the control transfer
correctly.

IDLEHANDSHAKE SETUP

No-data Control
return Status

Status

Status

Status

Status

Status

DATAOUT

DATAIN

Control Read

Control Write

Status

Connectivity 57

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

6.5.5. Control OUT Handler

Figure 6-7: Flowchart of the Control OUT Handler

The microprocessor must clear the control OUT interrupt bit on the Device Controller of ISP1161x and verify whether
this endpoint is full. Figure 6-8 contains a pseudocode to check whether the OUT endpoint is full. This is done by
issuing a Read Endpoint Status command (code 0x50) that clears the control OUT interrupt bit of the Interrupt register,
and at the same time returns status information. Figure 6-9 shows a pseudocode to read the Endpoint Status register (see
Table 6-3 and Table 6-4). This clears the corresponding endpoint interrupt. If the status information reports a Setup
packet (SETUPT bit (bit 2) of the Endpoint Status register), the “SETUPPROC” state will be set for the Main Loop to
process. Otherwise, the microprocessor extracts the content of the data OUT packet buffer by reading the control
endpoint. Figure 6-10 contains a pseudocode to read the contents of an OUT buffer. After making sure all the data is
received, the handler sets the Device Controller of ISP1161x to the “REQUESTPROC” state.

EP_Status = Read_Endpoint_Status(0x00) /* Endpoint status of EP0 */
if(EP_Status & 0x20) /* Check whether the primary buffer is full or not */
{

/* Proceed with the program flow */
}

Figure 6-8: Code Example to Check Status of the OUT Endpoint

Control OUT
Handler

Buffer Full

Setup Packet

Control State <-
STALL

Yes

Yes

Control State =
DATAOUT?

Read Control OUT Endpoint Buffer
Clear the Buffer

All Data Received?

Control State <-
REQUESTPROC

Yes

Yes

No

No

No

Control State <-
SETUPPROC

Data OUT Packet

Control State <-
DATAOUT

No
Control OUT Status Wrong

Return

Clear Control OUT
Interrupt

End of Control OUT
Handler

Connectivity 58

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

UCHAR Read_Endpoint_Status(UCHAR EPIndex)
{

UCHAR c;
outport(D13_COMMAND_PORT, READ_EP_ST + EPIndex); /* READ_EP_ST = 0x50 */
c = (UCHAR)(inport(D13_DATA_PORT) & 0x0ff);
return c;

}

Figure 6-9: Code Example for Reading the Endpoint Status Register

A typical pseudocode to read the contents of an OUT buffer is given in Figure 6-10.

USHORT Read_Endpoint (UCHAR EPIndex , USHORT* PTR , USHORT LENGTH)
{

USHORT j,i;
/* Select endpoint */
outport(D13_COMMAND_PORT , READ_EP+EPIndex); /* READ_EP = 0x10 */
j = inport(D13_DATA_PORT); /* Read the length in bytes inside the OUT buffer */
if(j > LENGTH)

j = LENGTH;
for(i=0 ; i<j ; i++)
{ /* Read buffer */

*(PTR+i) = inport(D13_DATA_PORT);
}
/* Clear buffer */
outport(D13_COMMAND_PORT , CLEAR_BUFF+ EPIndex); /* CLEAR_BUFF = 0x70 */
return j;

}

Figure 6-10: Code Example for Reading the Contents of an OUT Buffer

Table 6-3: Endpoint Status Register: Bit Allocation

Connectivity 59

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Table 6-4: Endpoint Status Register: Bit Description

6.5.6. Control IN Handler
After the Setup stage is complete, the host executes the Data phase. If the Device Controller of ISP1161x receives a
control IN packet, it will go to the “control IN handler”. The microprocessor must first clear the control IN interrupt
bit of the ISP1161x Device Controller by reading its Read Endpoint Status code (Code 0x51). Figure 6-11 shows a
pseudocode to read the Endpoint Status register. This clears the corresponding endpoint interrupt. Using the Endpoint
status, it can determine whether the IN buffer is empty or full. Figure 6-12 contains a pseudocode to check whether the
IN endpoint is empty or not. After verifying that the Device Controller of ISP1161x is in the appropriate state, the
microprocessor proceeds to send the data packet, see Figure 6-13.

Figure 6-14 shows the flowchart of the control IN handler. Since the Device Controller of the ISP1161x control
endpoint has only 64 bytes FIFO, the microprocessor must control the amount of data during the transmission phase, if
the requested length is more than 64 bytes. As indicated in the flowchart, the microprocessor must check its current and
remaining data size to be sent to the host. If the remaining data size is greater than 64 bytes, the microprocessor will
send the first 64 bytes and then subtract the reference length (requested length) by 64. When the next control IN token
comes, the microprocessor determines whether the remaining byte is zero. If there is no more data to be sent, the
microprocessor must send an empty packet to inform the host that there is no more data to be sent.

UCHAR Read_Endpoint_Status(UCHAR EPIndex)
{

UCHAR c;
outport(D13_COMMAND_PORT, READ_EP_ST + EPIndex); /* READ_EP_ST = 0x50 */
c = (UCHAR)(inport(D13_DATA_PORT) & 0x0ff);
return c;

}

Figure 6-11: Code Example for Reading the Endpoint Status Register

Connectivity 60

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

EP_Status = Read_Endpoint_Status(0x01) /* Endpoint status of EP1 */
if(!(EP_Status & 0x20)) /* Check whether the primary buffer is empty or not */
{

/* Proceed with the program flow */
}

Figure 6-12: Code Example to Check the Status of the IN Endpoint

USHORT Write_Endpoint (UCHAR EPIndex , USHORT* PTR , USHORT LENGTH)
{
USHORT i;

/* Select the endpoint */
outport(D13_COMMAND_PORT , WRITE_EP+EPIndex); /* WRITE_EP = 0x00 ; EPIndex = 0x01 */
outport (D13_DATA_PORT , LENGTH); /* Write the length of the data into the IN buffer */

/* Write the buffer */
for(i=0 ; i<LENGTH ; i++)
outport(D13_DATA_PORT , *(PTR+i));

/* Validate buffer */
outport(D13_COMMAND_PORT, EP_VALID_BUF+bEPIndex); /* EP_VALID_BUF =0x60 ; EPIndex = 0x01 */

return j;
}

Figure 6-13: Code Example for Writing the Contents to an IN Buffer

Figure 6-14: Flowchart of the Control IN Handler

Note: OUT and IN data transactions differ slightly in implementation. The control OUT handler and the control IN
handler are called during a control OUT interrupt event and a control IN interrupt event, respectively. When the control
OUT interrupt event occurs, it signifies that the host has already sent data to the control OUT endpoint. This OUT
interrupt is the trigger to start reading from the buffer. However, for the control IN, the payload is first written in the IN
endpoint, and then validated.

Control IN Handler

Clear Control IN Interrupt
Bit

Buffer Empty?

Control State =
DATAIN?

Yes

Write Control IN Endpoint Buffer
Validate the Buffer

 Control State <- DATAIN

Control State <- STALL

Last Packet?

Control Status Wrong Return

End of Control IN Handler

No

Yes

No

No

Yes

Write Control IN Buffer with
Remaining Data Size

Control State <- HANDSHAKE

Last Packet=0?

Write Control IN Buffer with
Empty Packet

Control State <-
HANDSHAKE

Yes

No

Connectivity 61

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

6.5.7. Bulk Endpoint Handler
The Device Controller of ISP1161x has 16 endpoints: control IN and OUT plus 14 configurable endpoints. The 14
endpoints can be individually defined as interrupt, Bulk or isochronous, IN or OUT. The size of the FIFO determines
the maximum packet size that the hardware can support for a given endpoint. Table 6-5 shows the recommended
register programming of the Endpoint Configuration register for a Bulk endpoint. The bit allocation and bit description
of the Endpoint Configuration register are given in Table 6-6 and Table 6-7, respectively.

Table 6-5: Recommended Endpoint Configuration Register Programming for a Bulk Endpoint
Bit Bit Setting Description
7 1 Endpoint enable bit
6 0 for OUT

1 for IN
Endpoint direction

5 1 Enable double buffering
4 0 Bulk endpoint

3 to 0 0011 Size bits of an enabled endpoint: 64 bytes

Table 6-6: Endpoint Configuration Register: Bit Allocation

Table 6-7: Endpoint Configuration Register: Bit Description

An example on how to configure a Bulk OUT or Bulk IN endpoint is given in Figure 6-15.

#define EPCNFG_FIFO_EN 0x80
#define EPCNFG_DBLBUF_EN 0x20
#define EPCNFG_NONISOSZ_64 0x03
#define EPCNFG_IN_EN 0x40

/* Configuration of Bulk OUT */
SetEndpointConfig(EPCNFG_FIFO_EN\

|EPCNFG_DBLBUF_EN\
|EPCNFG_NONISOSZ_64\
, Bulk_EPIndex\ /* Ranges from 0x00 – 0x0F, depending on which endpoint you */

/* configure as Bulk OUT. */
);

/* Configuration of Bulk IN */
SetEndpointConfig(EPCNFG_FIFO_EN\

|EPCNFG_DBLBUF_EN\
|EPCNFG_NONISOSZ_64\
|EPCNFG_IN_EN\

Connectivity 62

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

, Bulk_EPIndex\ /* Ranges from 0x00 – 0x0F, depending on which endpoint you */
/* configure as Bulk IN. */

);

Figure 6-15: Code Example for Configuring a Bulk OUT or Bulk IN Endpoint

The function definition of void SetEndpointConfig(UCHAR bEPConfig, UCHAR bEPIndex) is given in Figure 6-16.

void SetEndpointConfig(UCHAR bEPConfig, UCHAR bEPIndex)
{

outport(D13_COMMAND_PORT, (USHORT)(WR_EP_CONFIG+bEPIndex)); /* WR_EP_CONFIG = 0x20 */
outport(D13_DATA_PORT,(USHORT)bEPConfig);

}

Figure 6-16: Function Definition of void SetEndpointConfig(UCHAR bEPConfig, UCHAR bEPIndex)

When the host is ready to transmit the Bulk data, it issues an OUT token packet followed by a data packet. The Device
Controller of ISP1161x generates an interrupt to inform the microprocessor. The microprocessor must clear the
interrupt bit of the ISP1161x Device Controller and verify the data length. The flowchart of the Bulk OUT handler is
given in Figure 6-17.

Figure 6-17: Flowchart of the Bulk OUT Handler

Bulk OUT
Handler

Buffer Full
(see Figure 6-19)

Yes

Read Bulk OUT Endpoint Buffer
(see Figure 6-20)

All Data Received?

Yes

No

No Bulk OUT Status Wrong
Return

Clear Bulk OUT Interrupt
(see Figure 6-18)

End of Bulk OUT Handler

Connectivity 63

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Figure 6-18 shows the code example for reading the Endpoint Status register. This clears the corresponding endpoint
interrupt.

UCHAR Read_Endpoint_Status(UCHAR EPIndex)
{

UCHAR c;
outport(D13_COMMAND_PORT, READ_EP_ST + EPIndex); /* READ_EP_ST = 0x50 */
c = (UCHAR)(inport(D13_DATA_PORT) & 0x0ff);
return c;

}

Figure 6-18: Code Example for Reading the Endpoint Status Register

/* Bulk_EPIndex ranges from 0x50 – 0x5F, depending on which endpoint you configure as Bulk */
EP_Status = Read_Endpoint_Status(BULK_EPIndex)
if(EP_Status & 0x20) /* Check whether the primary buffer is full */
{

/* Proceed with the program flow */
}

Figure 6-19: Code Example to Check the Status of the Bulk OUT Endpoint

USHORT Read_Endpoint (UCHAR EPIndex , USHORT* PTR , USHORT LENGTH)
{

USHORT j,i;
/* Select endpoint */
outport(D13_COMMAND_PORT , READ_EP+EPIndex); /* READ_EP = 0x10 */
j = inport(D13_DATA_PORT); // Read the length in bytes inside the OUT buffer
if(j > LENGTH)

j = LENGTH;
/*Read the buffer */
for(i=0 ; i<j ; i++)

*(PTR+i) = inport(D13_DATA_PORT);

/* Clear the buffer */
outport(D13_COMMAND_PORT , CLEAR_BUFF+ EPIndex); /* CLEAR_BUFF = 0x70 */
return j;

}
Figure 6-20: Code Example for Reading the Contents of a Bulk OUT Buffer

When the host is ready to receive the Bulk data, it issues an IN token. The Device Controller of ISP1161x generates an
interrupt to inform the microprocessor. The microprocessor must clear the interrupt bit of the ISP1161x Device
Controller and return the data packet to be sent. The flowchart of the Bulk IN handler is given in Figure 6-21.

Connectivity 64

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Figure 6-21: Flowchart of the Bulk IN Handler

A pseudocode for reading the Endpoint Status register is given in Figure 6-22. This clears the corresponding endpoint
interrupts.

UCHAR Read_Endpoint_Status(UCHAR EPIndex)
{

UCHAR c;
outport(D13_COMMAND_PORT, READ_EP_ST + EPIndex); /* READ_EP_ST = 0x50 */
c = (UCHAR)(inport(D13_DATA_PORT) & 0x0ff);
return c;

}

Figure 6-22: Code Example for Reading the Endpoint Status Register

/* Bulk_EPIndex ranges from 0x50 – 0x5F, depending on which endpoint you configure as Bulk. */
EP_Status = Read_Endpoint_Status(BULK_EPIndex)
If(!(EP_Status & 0x20)) /* Check whether the primary buffer is full or not */
{

/*Proceed with the program flow */
}

Figure 6-23: Code Example to Check the Status of the Bulk IN Endpoint

USHORT Write_Endpoint (UCHAR EPIndex , USHORT* PTR , USHORT LENGTH)
{

USHORT i;
/* Select the endpoint */
outport(D13_COMMAND_PORT , WRITE_EP+EPIndex); /* WRITE_EP = 0x00 */
outport (D13_DATA_PORT , LENGTH); /* Write the length of data into the IN buffer */

/* Write the buffer */
for(i=0 ; i<LENGTH ; i++)

outport(D13_DATA_PORT , *(PTR+I));

Bulk IN
Handler

Buffer Empty?
(see Figure 6-23)

Yes

Write Bulk IN Endpoint Buffer
(see Figure 6-24)

Last Packet?

Yes

No

No Bulk IN Status Wrong
Return

Clear Bulk IN Interrupt
(see Figure 6-22)

End of Bulk IN Handler

Connectivity 65

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

/* Validate the buffer */
?outport(D13_COMMAND_PORT, EP_VALID_BUF+bEPIndex); /* EP_VALID_BUF =0x60; */

return j;
}

Figure 6-24: Code Example for Writing the Contents into a Bulk IN Buffer

6.5.8. ISO Endpoint Handler
Table 6-8 contains the recommended register programming in the Endpoint Configuration register for an ISO endpoint.

Table 6-8: Recommended Endpoint Configuration Register Programming for an ISO Endpoint
Bit Bit Setting Description
7 1 Endpoint enable bit
6 0 for OUT

1 for IN
Endpoint direction

5 1 Enable double buffering
4 1 ISO endpoint

3 to 0 1011 Size bits of an enabled endpoint: 512 bytes

Figure 6-25 contains an example on how to configure an ISO OUT or ISO IN endpoint.

#define EPCNFG_FIFO_EN 0x80
#define EPCNFG_DBLBUF_EN 0x20
#define EPCNFG_ISOSZ_512 0x0B
#define EPCNFG_IN_EN 0x40
#define EPCNFG_ISO_EN 0x10

/* Configuration of ISO OUT */
SetEndpointConfig(EPCNFG_FIFO_EN\

|EPCNFG_DBLBUF_EN\
|EPCNFG_ISOSZ_512\
|EPCNFG_ISO_EN \
, ISO_EPIndex\ /* Ranges from 0x00 – 0x0F, depending on which endpoint you */

/* configure as ISO OUT.*/
);

/* Configuration of ISO IN */
SetEndpointConfig(EPCNFG_FIFO_EN\

|EPCNFG_DBLBUF_EN\
|EPCNFG_ISOSZ_512\
|EPCNFG_ISO_EN \
|EPCNFG_IN_EN\
, ISO_EPIndex\ /* Ranges from 0x00 – 0x0F, depending on which endpoint you */

/* configure as ISO IN */
);

Figure 6-25: Code Example for Configuring an ISO OUT or ISO IN Endpoint

The function definition of SetEndpointConfig(UCHAR bEPConfig, UCHAR bEPIndex) is given in Figure 6-26.

void SetEndpointConfig(UCHAR bEPConfig, UCHAR bEPIndex)
{

outport(D13_COMMAND_PORT, (USHORT)(WR_EP_CONFIG+bEPIndex)); /* WR_EP_CONFIG = 0x20 */
outport(D13_DATA_PORT,(USHORT)bEPConfig);

}

Figure 6-26: Function Definition of void SetEndpointConfig(UCHAR bEPConfig, UCHAR bEPIndex)

Connectivity 66

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Figure 6-27 and Figure 6-28 contains the flowcharts of the ISO OUT handler and the ISO IN handler, respectively.

Figure 6-27: Flowchart of the ISO OUT Handler

Figure 6-28: Flowchart of the ISO IN Handler

Time is a key element of an isochronous transfer. A typical example of the isochronous data is voice. All isochronous
pipes move exactly one data packet in each frame, that is, every 1 ms.

ISO OUT
Handler

Read ISO OUT Endpoint Buffer
(see Figure 6-30)

All Data
Received?

Yes

No

Clear ISO OUT Interrupt Bit
(see Figure 6-29)

End of ISO OUT
Handler

ISO IN Handler

Clear ISO IN Interrupt Bit
(see Figure 6-29)

Write ISO IN Buffer
(see Figure 6-31)

Last
Packet?

End of ISO IN
Handler

No

Yes

Connectivity 67

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

A pseudocode for reading the Endpoint Status register is given in Figure 6-29. This clears the corresponding endpoint
interrupts.

UCHAR Read_Endpoint_Status(UCHAR EPIndex)
{

UCHAR c;
outport(D13_COMMAND_PORT, READ_EP_ST + EPIndex); /* READ_EP_ST = 0x50 */
c = (UCHAR)(inport(D13_DATA_PORT) & 0x0ff);
return c;

}

Figure 6-29: Code Example for Reading the Endpoint Status Register

USHORT ReadISOEndpoint(UCHAR bEPIndex, USHORT* ptr, USHORT len)
{

USHORT i, j;

/* Select the endpoint */
outport(D13_COMMAND_PORT, READ_EP+ bEPIndex); /* READ-EP = 0x10 */
j = inport(D13_DATA_PORT); /* Reading length of data in the buffer */

if(j != len)
j = len;

/* Read the buffer */
for(i=0; i<j; i++)
*(ptr + i) = inport(D13_DATA_PORT);

/* Clear the buffer */
outport(D13_COMMAND_PORT, CLEAR_BUF+bEPIndex); /* CLEAR_BUF = 0x70 */
return j;

}

Figure 6-30: Code Example for Reading from an ISO Endpoint Buffer
USHORT WriteISOEndpoint(UCHAR bEPIndex, USHORT* ptr, USHORT len)
{

USHORT i;
static UCHAR j;

/* Select the endpoint */
outport(D13_COMMAND_PORT, WRITE_EP + bEPIndex); /* WRITE_EP = 0x00 */
outport(D13_DATA_PORT, len); /* Writing the length of data */

/* Write the buffer */
for(i=0; i<len; i=i+2)

outport(D13_DATA_PORT, *(ptr+i));
/* Validate the buffer */
outport(D13_COMMAND_PORT, VALID_BUF+bEPIndex); /* VALID_BUF = 0x60 */
return i;

}

Figure 6-31: Code Example for Writing to an ISO Endpoint Buffer

6.6. Main Loop
When power is switched on, the microprocessor must initialize its ports, memory, timer, and interrupt service routine
handler. Then, the microprocessor reconnects USB, which involves setting the SOFTCT bit in the Mode register to ON.
This procedure is important because it ensures that the ISP1161x Device Controller will not operate before the
microprocessor is ready to serve the ISP1161x Device Controller.

The flowchart of the Main Loop is given in Figure 6-32. In the Main Loop routine, the microprocessor polls for any
activity on the keyboard. If any of the specific keys is pressed, the handle key commands will execute the routine and
then return to the Main Loop. This routine is added for debugging purposes only. A 1 ms timer is programmed to
activate the routine to check for any key pressed on the evaluation board.

Connectivity 68

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Figure 6-32: Flowchart of the Main Loop

Main Loop

Initialize ports, memory and timer
Setup ISR and program interrupt controller

Reconnect USB

Key pressed?

Timer signal?

Suspend
change?

SETUPPROC

REQUESTPROC

Setup_dma?

Program exit?

End

No

No

No

No

No

No

Read the key code and
handle the key command

Update test LEDs on the
evaluation board

Read the suspend state and
display the suspend change

event

Dispatch the setup handler
for future processing

Dispatch the device request to
the protocol layer for processing

Dispatch the setup DMA handler

Yes

Yes

Yes

Yes

Yes

Yes

Bus reset? Display the bus reset eventYes

No

Yes

No

Loop

Connectivity 69

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Table 6-9: Mode Register: Bit Allocation

Table 6-10: Mode Register: Bit Description

Figure 6-33 contains a pseudocode for writing to the Mode register. An example on setting the SOFCT bit to enable
SoftConnect is given in Figure 6-34.

void SetMode(UCHAR bMode) // Function definition
{

outport(D13_COMMAND_PORT, WRITE_MOD_REG); /* WRITE_MOD_REG = 0xB8 */
outport(D13_DATA_PORT, bMode);

}

Figure 6-33: Code Example for Writing to the Mode Register

SetMode(MODE_INT_EN\ /* MODE_INT_EN = 0x08* enables all interrupts */
|MODE_SOFTCONNECT\ /* MODE_SOFTCONNECT = 0x01 enables SoftConnect */
|MODE_DMA16\ /* MODE_DMA16 = 0x80* selects 16-bit DMA bus width */

);

Figure 6-34: Code Example on Setting SoftConnect

When the polling reaches the check setup packet, the microprocessor verifies whether the current status is
SETUPPROC. Then, it dispatches it to set up handler subroutines for processing. On reaching REQUESTPROC, it
dispatches the device request to the protocol layer for processing.

Connectivity 70

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

6.7. Standard Device Requests
All USB devices must respond to a variety of requests called “standard” requests. These requests are used for
configuring a device and controlling the state of its interface, along with other miscellaneous features. The host issues
these device requests by using the control transfer mechanism. The three states—Default State, Address State and
Configured State—must be taken care of. At a particular time, the device can be in only one of the states. For detailed
information, refer to Chapter 9 of USB Specification Rev. 2.0.

6.7.1. Clear Feature Request
In the Clear Feature request, the microprocessor must clear or disable a specific feature of the device based on the three
states. The flowchart of Clear Feature is given in Figure 6-35. In this case, the microprocessor determines whether the
request is meant for the device, interface or endpoints. There will not be any support if the recipient is an interface.
Feature selectors are used when enabling or setting features specific to the device or endpoint, such as remote wake-up.
If the recipient is a device, the microprocessor must disable the remote wake-up function, if this function is enabled. If
the recipient is an endpoint, the microprocessor must unstall the specific endpoint through the Write Endpoint Status
command.

Is recipient a
device?

No

No

Clear_Feature

End Clear_Feature

Address State

Clear the device
feature

according to
"Feature
Selector"

Yes

Is recipient an
endpoint?

Clear the
endpoint feature

according to
"Feature
Selector"

YesIs recipient for
endpoint zero?

Yes

No

Request Error
Stall Endpoint

Default StateDevice Behaviour is
Undefined Configured State

Is recipient a
device?

Clear the device
feature

according to
"Feature
Selector"

Yes

Is recipient an
endpoint? Yes

Clear the
endpoint feature

according to
"Feature
Selector"

No

Send Zero-
Length Packet

Send Zero-
Length Packet

Figure 6-35: Flowchart of Clear Feature

Connectivity 71

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Zero-Length Packet

A zero-length packet is a data packet with data length as zero. It is not the same as placing a 0x00 in the buffer and
sending it out because this means a data length of 1 and a payload of 0x00. As can be seen in the pseudocode in Figure
6-13, sending a zero-length packet can be easily done by calling the Write_Endpoint() function with the arguments as
given.

// This function call will send a zero-length packet to the host through the control IN endpoint.
Write_Endpoint (1 ,0 ,0) // See Figure 6-13

Figure 6-36: Code Example to Send Zero-Length Packet

Request Error

When a control pipe request is not supported or the device is unable to transmit or receive data, a STALL must be
returned in response to an IN Token. A stalled control endpoint is automatically unstalled when it receives a Setup
token, regardless of the packet content. If the microcontroller wishes to unstall an endpoint, the Stall Endpoint or
Unstall Endpoint command can be used.

void Write_EP_Status(UCHAR bEPIndex, UCHAR bStalled)
{
if(bStalled&0x01) // Check to stall or unstall the endpoint
outport(D13_COMMAND_PORT, STALL_EP + bEPIndex); /* STALL_EP = 0x40 */
else
outport(D13_COMMAND_PORT, UNSTALL_EP + bEPIndex); /* UNSTALL_EP = 0x80 */
}

Figure 6-37: Code Example to Stall or Unstall an Endpoint

Connectivity 72

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

6.7.2. Get Status Request
In the Get Status request, the microprocessor must return the status of the specific recipient based on the state of the
device. The microprocessor must also determine the recipient of the request. If the request is to a device, the
microprocessor must return the status of the device to the host, depending on the states. For a system having remote
wake-up and self-powering capabilities, the returning data is 0x0003. Figure 6-38 shows the Get Status flowchart.

Figure 6-38: Flowchart of Get Status

Get_Status

Return device
status to the host

Is recipient
a device?

Is recipient
an interface?

Request Error
Stall Endpoint

Is recipient
an endpoint?

End of
Get_Status

Yes

No

No

Yes

Yes

Device behaviour
is undefined

Is recipient
endpoint zero?

No

Return endpoint
status to the host Yes

Default State

Address State

Configured State

Request Error
Stall Endpoint

No

Is recipient
a device?

Yes Return device
status to the host

No

Is recipient
an interface? Yes Return interface

status to the host

No

Is recipient
an endpoint?

No

Return endpoint
status to the hostYes

Connectivity 73

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

6.7.3. Set Address Request
In the Set Address request (see Figure 6-39), the device gets the new address from the content of the Setup packet. Note
that this Set Address request does not have a Data phase. Therefore, the microprocessor must write a zero-length data
packet to the host at the acknowledgment phase.

Set_Address

End Set_Address

Default State

Is the address
non-zero?

Write zero to the
Device Address register.

State = Default State

Write new address to the
Device Address register.

State = Address State

Address State

Is the address
non-zero?

Write zero to the Device
Address register.

State = Default State

Write new address to the
Device Address register.

State = Address State

Configured State

Device
behaviour is
undefined

Send zero-length
packet to the host Send zero-length

packet to the host

No Yes No Yes

Figure 6-39: Flowchart of Set Address

Figure 6-40 shows a pseudocode of the Set Address routine.

void SetAddress(UCHAR bAddress, UCHAR bEnable)
{

outport(D13_COMMAND_PORT, WR_DEV_ADD); // WR_DEV_ADD = 0xB6
if(bEnable) // Enables or disables the address

bAddress |= ADDR_EN; /* ADDR_EN = 0x80 */
else

bAddress &= ADDR_MASK; /* ADDR_MASK = 0x7F */
outport(D13_DATA_PORT, bAddress);

}
Figure 6-40: Code Example of the Set Address Routine

Table 6-11: Device Address Register: Bit Allocation

Connectivity 74

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Table 6-12: Device Address Register: Bit Description

6.7.4. Get Configuration Request
In the Get Configuration request (see the flowchart in Figure 6-41), the microprocessor must return the current
configuration value. The microprocessor first determines what state the device is in. Depending on the state, the
microprocessor will either send a zero or the current non-zero configuration value back to the host.

Send non-zero
configuration value of the
current configuration to

the host

Send "0" to the host

Get_Configuration

End
Get_Configuration

Address State Configured State

Device
behaviour is

undefined

Default State

Figure 6-41: Flowchart of Get Configuration

Connectivity 75

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

6.7.5. Get Descriptor Request
For the Get Descriptor request, the microprocessor must return the specific descriptor, if the descriptor exists. First, the
microprocessor determines whether the descriptor type request is for a device or configuration. It then sends the first 64
bytes of the device descriptor, if the descriptor type is for a device. The reason for controlling the size of returning bytes
is that the control buffer has only 64 bytes of memory. The microprocessor must set a register to indicate the location of
the transmitted size. The Get Descriptor request is a valid request for Default State, Address State and Configured State.
Figure 6-42 shows the flowchart of Get Descriptor.

Figure 6-42: Flowchart of Get Descriptor

Get_Descriptor

Does the host
want a device

descriptor
request?

Yes

No

Does the
host want a
configuration

descriptor
request?

Yes

No

Does the host
want a string

descriptor
request?

Send Device Descriptor

Send Configuration
Descriptor

Send String Descriptor
Yes

Request Error Stall
Endpoint

End of
Get_Descriptor

No

Connectivity 76

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

6.7.6. Set Configuration Request
For the Set Configuration request (see Figure 6-44), the microprocessor determines the configuration value from the
Setup packet. If the value is zero, the microprocessor must clear the configuration flag in its memory and disable the
endpoint. If the value is one, the microprocessor must set the configuration flag. Once the flag is set, the microprocessor
must also send the zero-data packet to the host at the acknowledgment phase.

Set_Configuration

End Set_Configuration

Address State

Did the host send
"0" to the device?

Configured State

Did the host send
"0" to the device?Yes Yes

State = Address State
Send zero packet to the hostNo No

Did the host
send the configuration
value as stated in the

configuration
descriptor?

Request Error
Stall Endpoint

Yes

State = Configured State
Send zero packet to the host

Yes

Request Error
Stall Endpoint

No
No

State = Address State
Send zero packet to the host

State = Configured State
Send zero packet to the host

Device
behaviour is
undefined

Default State

Did the host
send the configuration
value as stated in the

configuration
descriptor?

Figure 6-43: Flowchart of Set Configuration

Connectivity 77

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

6.7.7. Get and Set Interface Requests
For the Get and Set Interface requests (see flowcharts in Figure 6-44 and Figure 6-45), the microprocessor just needs to
send one zero-data packet to the host because the Philips evaluation board only supports one type of interface. For the
Set Interface request on the Philips evaluation board, the microprocessor need not do anything except to send one zero
data packet to the host as the acknowledgment phase.

Get_Interface
Address State Configured state

Default StateRequest Error
Stall Endpoint

Device behaviour
is undefined

Send a zero to
host

End of
Get_Interface

Figure 6-44: Flowchart of Get Interface

Set_InterfaceAddress State Configured state

Default StateRequest Error
Stall Endpoint

Device behaviour
is undefined

Send a zero to
host

End of
Get_Interface

Figure 6-45: Flowchart of Set Interface

6.7.8. Set Feature Request
The Set Feature request is just the opposite of the Clear Feature request. Figure 6-46 contains the flowchart of Set
Feature. If the recipient is a device, the microprocessor must set the feature of the device according to the feature
selector in the Setup packet. Again, there is no support for the Interface recipient. For example, if the feature selector is
0 (which means enabling endpoint), the Device Controller of the ISP1161x specific endpoint must be stalled through the
Write Endpoint Status command.

Connectivity 78

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Set_Feature

End
Set_Feature

Is recipient a
device?

Is recipient
an endpoint?

Set the device feature
according to

"Feature Selector"
Send Zero-Length packet

No

Yes

Address State

Yes

Set the endpoint feature
according to

"Feature Selector"
Send Zero-Length packet

No

Request Error
Stall Endpoint

Configured State

Is recipient a
device?

No

Is recipient
an endpoint?

No

Request Error
Stall Endpoint

Set the device feature
according to

"Feature Selector"
Send Zero-Length packet

Set the endpoint feature
according to

"Feature Selector"
Send Zero-Length packet

Yes

Yes

 Device
Behaviour is
Undefined

Default State

Figure 6-46: Flowchart of Set Feature

6.7.9. Class Request
Support for class requests is not included in the Device Controller of the ISP1161x sample firmware.

6.8. Vendor Request
In the ISP1161x Device Controller sample firmware and applet, the vendor request sets up the Bulk transfer or the
isochronous transfer. This request is sent through the control pipe that is done by IOCTL_WRITE_REGISTER.
IOCTL_WRITE_REGISTER is defined by Microsoft® Still Image USB Interface in Windows® 98 DDK. A device
vendor may also define requests supported by the device.

6.8.1. Vendor Request for the Bulk Transfer
The device request is defined in Table 6-13.

Table 6-13: Device Request
Offset Field Size Value Comments
0 BmRequestType 1 0x40 Vendor request, host to device
1 Brequest 1 0x0C Fixed value for IOCTL_WRITE_REGISTER
2 Wvalue 2 0 Offset, set to zero
4 Windex 2 0x0471 Fixed value of Setup Bulk transfer
6 Wlength 2 6 Data length of Setup Bulk transfer

The details requested by the Bulk transfer operation are sent in the Data phase after the Setup Token phase of the device
request. The sample firmware and applet use a proprietary definition, which is given in Table 6-14.

Connectivity 79

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Table 6-14: Proprietary Definition of the Sample Firmware and Applet
Offset Field Comments

0 Address[7:0] The start address of the requested Bulk transfer.
1 Address[15:8] —
2 Address[23:16] —
3 Size[7:0] Size of the transfer.
4 Size[15:8] —
5 Command Bit 7: 1—start Bulk transfer by DMA; 0—start Bulk transfer by PIO

Bit 0: 1—IN token; 0—OUT token.

6.8.2. CATC Capture of a PIO OUT Transfer

Figure 6-47: CATC Capture of a PIO OUT Transfer

Wvalue

BmRequestType

Brequest

Windex

Wlength

Proprietary definition

Empty packet

Data Payload 64 bytes

Connectivity 80

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

6.8.3. CATC Capture of a PIO IN Transfer

Figure 6-48: CATC Capture of a PIO IN Transfer

BmRequestType

Brequest Wvalue
Wlength

Windex

Proprietary definition

Empty packet

Data Payload 64 bytes

Connectivity 81

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

6.8.4. Vendor Request for the ISO Transfer
The device request is defined in Table 6-15.

Table 6-15: Device Request
Offset Field Size Value Comments

0 BmRequestType 1 0x40 Vendor request, host to device
1 Brequest 1 0x00 Fixed value for IOCTL_WRITE_REGISTER
2 Wvalue 2 — 0x0002 = ISO OUT; 0x0001 = ISO IN
4 Windex 2 — 0x0002 = ISO OUT; 0x0001 = ISO IN
6 Wlength 2 0x00 Data length of Setup ISO transfer

For the ISO transfer, the applet and the firmware must pre-arrange the size of the transfer before the transfer can be
completed successfully. This is because the vendor request does not give any transfer size information to the firmware.
Therefore, if you want to transfer 512 bytes of data, the ISO endpoint must be set to 512 bytes, which is the default size
set by the firmware.

6.8.5. CATC Capture of an ISO OUT Transfer

Figure 6-49: CATC Capture of an ISO OUT Transfer

WlengthBmRequestType Brequest Wvalue Windex

Data Payload 512 bytes

Empty packet

Connectivity 82

ISP1161x Embedded Programming Guide Rev. 1.0

__
Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

6.8.6. CATC Capture of an ISO IN Transfer

Figure 6-50: CATC Capture of an ISO IN Transfer

7. References
• ISP1161x Full-speed Universal Serial Bus single-chip host and device controller datasheet

• Universal Serial Bus Specification Rev. 2.0 (full-speed section)

• Open Host Controller Interface Specification for USB, Release: 1.0a.

Data Payload 512 bytes

BmRequestType Brequest
Wvalue Windex Wlength

Empty packet

	1. Introduction
	2. ISP1161x Software Models
	2.1. Host-Only Mode
	2.2. Device-Only Mode
	2.3. Simultaneous Host-and-Device Mode

	3. ISP1161x Hardware Models
	3.1. Host Controller Hardware Model
	3.2. Device Controller Hardware Model

	4. ISP1161x Software Architecture
	4.1. USB Host Software Architecture
	4.2. Host Stack Architecture
	4.3. USB Device Software Architecture

	5. Programming the Host Controller of ISP1161x
	5.1. Software Accessible Hardware Components
	5.2. HC Control and Status Registers
	5.2.1. Writing and Reading of the 16-Bit and 32-Bit Registers

	5.3. Writing and Reading of the ATL and ITL Buffers
	5.4. Typical Hardware Initialization Sequence
	5.4.1. Detecting the Host Controller
	5.4.2. Software Resetting the Host Controller
	5.4.3. Configuring the HcHardwareConfiguration Register
	5.4.4. Configuring Interrupts
	5.4.5. Configuring the HcFmInterval Register
	5.4.6. Configuring Root Hub Registers
	5.4.7. Setting the ITL and ATL Buffer Lengths
	5.4.8. Installing INT1 Interrupt Service Routine
	5.4.9. Setting the Host Controller to the Operational State
	5.4.10. Setting the Host Controller to Perform USB Enumeration

	5.5. Host Controller Driver Operation Flow
	5.6. Accessing the ATL Buffer
	5.6.1. Using SOFITLInt Versus ATLInt
	5.6.2. Starting Scan of the ATL Buffer by Hardware

	5.7. Accessing the ITL Buffer
	5.8. Flowchart of the Host Controller in the Operational Mode
	5.9. Setting Up PTDs for Transfers
	5.9.1. Control Transfer
	5.9.2. Bulk, Interrupt and Isochronous Transfers

	5.10. Data Structures for List Processing
	5.11. Error Handling

	6. Programming the Device Controller of ISP1161x
	6.1. Firmware Structure of the Device Controller
	6.1.1. Hardware Abstraction Layer—HAL4SYS.C
	6.1.2. Hardware Abstraction Layer—HAL4D13.C
	6.1.3. Interrupt Service Routine—ISR.C
	6.1.4. Protocol Layer—CHAP_9.C
	6.1.5. Protocol Layer—D13BUS.C
	6.1.6. Main Loop—MAINLOOP.C

	6.2. Porting the Firmware to Other CPU Platform
	6.3. Developing the Firmware in the Polling Mode
	6.4. Hardware Abstraction Layer
	6.4.1. Hardware Abstraction Layer for the System
	6.4.2. Hardware Abstraction Layer for the Device Controller of ISP1161x

	6.5. Interrupt Service Routine
	6.5.1. Bus Reset
	6.5.2. Suspend Change
	6.5.3. EOT Handler
	6.5.4. Control Endpoint Handler
	6.5.5. Control OUT Handler
	6.5.6. Control IN Handler
	6.5.7. Bulk Endpoint Handler
	6.5.8. ISO Endpoint Handler

	6.6. Main Loop
	6.7. Standard Device Requests
	6.7.1. Clear Feature Request
	6.7.2. Get Status Request
	6.7.3. Set Address Request
	6.7.4. Get Configuration Request
	6.7.5. Get Descriptor Request
	6.7.6. Set Configuration Request
	6.7.7. Get and Set Interface Requests
	6.7.8. Set Feature Request
	6.7.9. Class Request

	6.8. Vendor Request
	6.8.1. Vendor Request for the Bulk Transfer
	6.8.2. CATC Capture of a PIO OUT Transfer
	6.8.3. CATC Capture of a PIO IN Transfer
	6.8.4. Vendor Request for the ISO Transfer
	6.8.5. CATC Capture of an ISO OUT Transfer
	6.8.6. CATC Capture of an ISO IN Transfer

	7. References

