PHILIPS

Philips Semiconductors

Connectivity
April 2002
AN10005-01
ISP1161x Embedded Programming Guide
Rev. 1.0
Revision History:
Rev. Date Descriptions Author

We welcome your feedback. Send it to wired.support@philips.com

= PHILIPS

@

Philips Semiconductors - Asia Product Innovation Centre
Visit http://www. flexiusb.com




Connectivity 2

ISP1161x Embedded Programming Guide Rev. 1.0

This is a legal agreement between you (either an individual or an entity) and Philips Semiconductors. By accepting this
product, you indicate your agreement to the disclaimer specified as follows:

DISCLAIMER

PRODUCT IS DEEMED ACCEPTED BY RECIPIENT. THE PRODUCT IS PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, PHILIPS
SEMICONDUCTORS FURTHER DISCLAIMS ALL WARRANTIES, INCLUDING WITHOUT LIMITATION
ANY IMPLIED WARRANTIES OF MERCHANT ABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NONINFRINGEMENT. THE ENTIRE RISK ARISING OUT OF THE USE OR PERFORMANCE OF THE
PRODUCT AND DOCUMENTATION REMAINS WITH THE RECIPIENT. TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL PHILIPS SEMICONDUCTORS OR ITS
SUPPLIERS BE LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, DIRECT, INDIRECT, SPECIAL,
PUNITIVE, OR OTHER DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
OTHER PECUNIARY LOSS) ARISING OUT OF THIS AGREEMENT OR THE USE OF OR INABILITY TO
USE THE PRODUCT, EVEN IF PHILIPS SEMICONDUCTORS HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 3

ISP1161x Embedded Programming Guide Rev. 1.0

CONTENTS

1. INTRODUCTION ..o 7
2. ISPLIGIX SOFTWARE IMODELS ......ottititititttitttteeeeeeteeee ettt ettt ettt ettt et e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e aaaaaaens 8
2.1. [ [0 1S il O ] NTIRZ01Y/ 0] =S

2.2. DEVICE-ONLY MODE. ..ot
2.3. SIMULTANEOUS HOST-AND-DEVICE MODE

3. ISPLI6IX HARDWARE MODELS.......oottttitiiiiieitieeieeeeeeeeeeeee ettt ettt e e e 11
3.1  HOST CONTROLLER HARDWARE IMODEL ....ocviiiiiiiiiiicicceie sttt ettt bbb b bbb bbb bbbt
3.2. DEVICE CONTROLLER HARDWARE MODEL

4. ISP1161X SOFTWARE ARCHITECTURE ...ttt e e e e e e e e eaeeaaaaaaaaaaaaaaaees 13
4.1, USB HOST SOFTWARE ARCHITECTURE ......ciitititititisii ittt bbb bbb bbb bbb bbbttt bbb bbb 13

4.2. HOST STACK ARCHITECTURE
4.3. USB DEVICE SOFTWARE ARCHITECTURE

5. PROGRAMMING THE HOST CONTROLLER OF ISPLIBLX....c.cciiiiiiiiiiiiiieienie et 17
5.1,  SOFTWARE ACCESSIBLE HARDWARE COMPONENTS. .....cutrertmersmersseesssessressssssssssssssssssssssssassssesssssssssessssssssesssessos 17
52, HC CONTROL AND STATUS REGISTERS .....couuurmmiermressisssessseesssessesssasssssssssesssssssssessssessassssessssassssessssssssssesssssssessssssas 17

5.2.1. Writing and Reading of the 16-Bit and 32-Bit REJISTEIS ........c.evurerrerieiieereereieiscneteieeessssiseie e sesss 19

5.3. WRITING AND READING OF THE ATL AND ITL BUFFERS.......cccccieriiicte ettt bbbt s 21
5.4. TYPICAL HARDWARE INITIALIZATION SEQUENCE ...ttt sttt bbb bbb bbb bbb 22
54.1. DeteCting the HOSE CONTIOMEL.........cecereeriicereeeiseiet ettt bbb bbb 23

5.4.2. Software Resetting the HOSE CONMIOIIEE.......c..oveveeiiscreie s sttt 23
54.3. Configuring the HcHardwareConfiguration REJISIEN .........vuvererrrrnreesisnseeesssssssssssssessssssssesssssssssssessessssssessessssssssesses 25
5.4.4, L0011 0 0] TSR RR 27
5.4.5. Configuring the HCFMINEIVAl REGISIET ......cvv.veveeesierereieisssssissesssss s st ss s ssssss st ssessssnssnssas 30
5.4.6. Configuring ROOE HUD REJISIES ......vuiiieeerei ettt ettt bbbt bbb 30
54.7. Setting the ITL and ATL BUFfer LENGNS ......c.vvuiiireiicreciiecee it ss bbb 32
54.38. Installing INTL INErrupt SEIVICE ROULINE.........vveereiiiireecieeineieieeict ettt 33
5.4.9. Setting the Host Controller to the Operational STALe ... 34
5.4.10.  Setting the Host Controller to Perform USB ENUMEIALION ..o isssnsesesessssssssssssessssmessesssessessesssssessenes 34
55. HOST CONTROLLER DRIVER OPERATION FLOW ....cctiiriiriiriiriieiiesiessesssesssesssessse s ssssssssssssssesssesssssssesssasssesssenes 36
5.6, ACCESSING THE ATL BUFFER......ovittitiireieriesiesisesssesssessss sttt et sb bbbt 36

5.6.1. UsiNg SOFTTLING WEISUS ATLINT .....viveircierieireessssiess s esssesse st sssssssssssssesssssssnssssssessesssssessessasssssnses 36
5.6.2. Starting Scan of the ATL Buffer by HAIGWAIE ..ottt enas 39
5.7. ACCESSING THE ITL BUFFER ..ottt b bbb bbb b bbb bbb bbb bbbt 40
5.8. FLOWCHART OF THE HOST CONTROLLER IN THE OPERATIONAL MODE ..ot 41
5.9. SETTING UP PTDS FOR TRANSFERS........ciititititiiiiit ittt bbbt bbb b bbb bbbt bbb bbb bbb bbbt 42
5.9.1. Control Transfer
5.9.2. Bulk, Interrupt and Isochronous Transfers

5.10. DATA STRUCTURES FOR LIST PROCESSING .....uvururirermserssessseesssssssssssessssssssesssssssessssassssssssssssssssssssssssassssassssenees 47
5.11. ERROR HANDLING ......cotvtmerisesssesseessessseess st sesss s s s 8816 43
6. PROGRAMMING THE DEVICE CONTROLLER OF ISPLIBLX .....ociiiiiiiiiieiesienie s 49
6.1.  FIRMWARE STRUCTURE OF THE DEVICE CONTROLLER w...cvtvtmirimeriserssesssesssssssssssssssssssssssssssssssessssasssssssssesssesssessos 49
6.1.1. Hardware ADSEraction Layel—HALASYS.C ...ttt st ss s enis 50
6.1.2. Hardware AbStraction Layer—HALADLI.C ..ottt st st sssis 50
6.1.3. Interrupt SErvice ROUINE——ISRLC .......ovuiiiieicretiei ettt 50

6.1.4. ProtoCol LAYEr——CHAP _9.C ...ttt bbb 50

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 4

ISP1161x Embedded Programming Guide Rev. 1.0
6.1.5. Protocol Layer—DL13BUS.C......cvvveeriirinrier s esssssesessessssssssssssesssesssssssssesssssessssssessesssssssessessssssessessassssssessasssssnses 50
6.16.  Main LOOp—MAINLOOP.C ...occcovrvrvrvrvrsossoosnossesssssssssssosnn

6.2.  PORTING THE FIRMWARE TO OTHER CPU PLATFORM
6.3.  DEVELOPING THE FIRMWARE IN THE POLLING MODE
6.4.  HARDWARE ABSTRACTION LAYER ....ccoviiiiiiiiineiniineeee e
6.4.1. Hardware Abstraction Layer for the SYStEM ..ot sssss e ssesssssssesssssessns
6.4.2. Hardware Abstraction Layer for the Device Controller of ISP1161x

6.5.  INTERRUPT SERVICE ROUTINE
6.5.1. BUS RESEL.....covvecs
6.5.2. SUSPENA CRANGE......-ecereeseieeeretseeseetee e es st see bbb bbb bbb bbbt
6.5.3. EOT HANGIET ..ottt bbb bbbttt
6.5.4 Control Endpoint Handler..........cccoeveeneneivineenenn.

6.5.5. Control OUT Handler.........ooevrvvveevenenrerenieins
6.5.6 Control IN HandIEr ..o
6.5.7. Bulk Endpoint Handler.........ccc.ovvererivveneeererennene,
6.5.8. 1SO Endpoint Handler..........c..ccc.vvmereriveneerirnnenenns

6.6, MAIN LOOP ...oovtrirreeeineineine e

6.7. STANDARD DEVICE REQUESTS .....covviiiiieeeveverinnns

6.7.1. Clear Feature Request
6.7.2. Get Status Request...............
6.7.3. SBE AUAIESS REGUESE ...ttt ettt bbb bbb bbb
6.7.4 Get CONFIGUIALION REGUESE ......vveresceseeseresessesesessssese s esssssssssesss st sssses s ess s ess s st st s s ses s ssssssassnssans
6.7.5. Get Descriptor Request.........
6.7.6. Set Configuration Request
6.7.7. Gt AN SEL INEEITACE REGUESES. ...v.rvrereererereesrirsssseseesessessssssessssssssssssessesssnssesessesssssessessassessesssessessesssssessessnssessssnsanssas
6.7.8. Set Feature Request
6.7.9. Class Request .........c.ccoceeeenee.

6.8. VENDOR REQUEST ..ot
6.8.1. Vendor Request for the Bulk Transfer...........ccocveeenn.
6.8.2 CATC Capture of a PIO OUT Transfer .................
6.8.3. CATC Capture of a PIO IN Transfer..........cccoevvnu
6.8.4. Vendor Request for the 1SO Transfer..........cocvevnen.
6.8.5 CATC Capture of an ISO OUT Transfer
6.8.6. CATC Capture of an ISO TN TTANSIEL ...ttt bbbt

7. REFERENCGES ... oo oottt e e e n e st e r e e n e nreenr e e nreenre e 82

TABLES

Table 5-1: HC Control and Status REJISLEr SUMMAKY ..ottt sebe bbb 18
Table 5-2: HcScratch Register: Bit Allocation
Table 5-3: HcCommandStatus Register: Bit AlIOCALION. ...ttt
Table 5-4: HcControl Register: Bit AHOCALION ..........cocvvuiivriicisssisesssississsssssss s ssssssssssessssssessssssessssssesssssssssessessssssssessassansses
Table 5-5;: HcHardwareConfiguration Register: Bit Allocation ........

Table 5-6: HcHardwareConfiguration Register: Bit Description
Table 5-7: HclnterruptEnable Register: Bit AllOCAtioN ........ccccvvvvveeneneireenrneireennes
Table 5-8: HcpuPInterruptEnable Register: Bit Allocation
Table 5-9: HclnterruptStatus Register: Bit Allocation...............

Table 5-10: HcpPInterrupt Register: Bit Allocation...................

Table 5-11 HcFmlnterval Register: Bit Allocation...................

Table 5-12: HcRhDescriptorA Register: Bit Allocation.............

Table 5-13: HcRhStatus Register: Bit Allocation..............ccevene.

Table 5-14: HcRhDescriptorB Register: Bit AHOCALION........ccc..vvvrirvinrcisrnsesssssssssessssssssesssssssesssesssssssssessessssssessessasssesses
Table 5-15: USB Transaction ErTOr COUES ... es s sses st ssess s ssssssssss s ssss s sssasssssssssssssssssassssans
Table 6-1: Building BIOCKS MOGITICATIONS .........curivriiiereieiseineieieiieiseie ettt

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 5

ISP1161x Embedded Programming Guide

Table 6-2; Interrupt Register: Bit AHIOCALION .......ccc.cvvrrieirinsieiesssissies s et ssessss s essansnes
Table 6-3: Endpoint Status Register: Bit Allocation...................

Table 6-4: Endpoint Status Register: Bit Description
Table 6-5: Recommended Endpoint Configuration Register Programming for a Bulk Endpoint
Table 6-6: Endpoint Configuration Register: Bit AllOCALION ..o

Table 6-7: Endpoint Configuration Register: Bit DESCIIPLION. ........c..vvreirerrrieiesssssesessssssssesssssssessssesssssesesssssssssessessssssesses
Table 6-8: Recommended Endpoint Configuration Register Programming for an 1SO Endpoint ...........c.ccovevevivvineeneirennns 65
Table 6-9: Mode Register: Bit AlIOCALION ..........cccoviiirrirrieissnseissssse s ssesssssessnes

Table 6-10: Mode Register: Bit DesCription ..........ccccoververeenes

Table 6-11: Device Address RegiSter: Bit AIOCALION ..ot sst bbbt
Table 6-12: Device Address Register: Bit Description
Table 6-13: DEVICE REQUEST .......covuiiereeeieieireeeeeie bbbt
Table 6-14: Proprietary Definition of the Sample Firmware and Applet
Table 6-15: DEVICE REQUEST ......cccvvvrr e sssses s esssssssssessssssssessssnes

FIGURES

Figure 2-1: ISP1161x Host-Only Mode SOftware MOTEL ... s ssssssssssssssssessesens 8
Figure 2-2: 1ISP1161x Device-Only Mode SOftWAre IMOUEL .........c..ciirieiiincreiei ettt 9
Figure 2-3: ISP1161x Simultaneous Host-and-Device Mode Software MOGEl ... 10

Figure 3-1: ISP1161x Host Controller Hardware Model
Figure 3-2: ISP1161x Device Controller Hardware Model....
Figure 4-1: USB HOSt SOFtWAre ArCRITECTIUIE ..........cvevriieririeississsseessssssse s ess sttt esse st sssssessssssssassnssses
Figure 4-2: HOSE StACK ATCHITECIUIE ......vveveeireeiericieissssie sttt ss st s
Figure 4-3: Host Stack Calling Sequence Example........c...cc.......
Figure 4-4: USB Device Software Architecture ........ccccccovvenne.
Figure 5-1: 16-Bit Register Access Cycle
Figure 5-2: 32-Bit Register Access Cycle
Figure 5-3: Code Example for 32-Bit Register Write..................
Figure 5-4: Code Example for 32-Bit Register Read..................
Figure 5-5: Code Example for 16-Bit Register Read..................
Figure 5-6: Code Example for 16-Bit Register Write.................
Figure 5-7: Code Example for Writing to the ATL Buffer............
Figure 5-8: Code Example for Detecting the Host Controller
Figure 5-9: Code Example for Resetting the HOSt CONEIOIIEN ...t
Figure 5-10: Code Example for Setting the Host Controller to the RESET State.........
Figure 5-11: Code Example for Initializing the HcHardwareConfiguration Register....
Figure 5-12: ISP1161x Host CONtroller INTErTUPT LOGIC ....c.vvuiiierieeieiiseireieieisisie ettt ssn st
Figure 5-13: Code Example for Initializing the Host Controller Interrupt
Figure 5-14: Code Example for Initializing the HcDescriptorA Register ...
Figure 5-15: Code Example for Initializing the HCRhStatus Register.........c..coccovvvvnennnn,
Figure 5-16: Code Example for Setting the ATL and ITL Buffer Lengths
Figure 5-17: Code Example for Setting the Host Controller to the Operational State
Figure 5-18: ATLINt INTErTUPE FIOW ...t
Figure 5-19: Running the Host Controller with the ATLInt Interrupt...........cccocoveuvevnnee.
Figure 5-20: Running the Host Controller with the SOFITLInt Interrupt..........ccccece....
Figure 5-21: Code Example for Writing to the ATL Buffer
Figure 5-22: Code Example for Reading from the ATL Buffer....
Figure 5-23: ITL BUTFFEr ACCESS FIOW .....cuuviiirieiicissieisiesssises sttt sttt snssn s
Figure 5-24: Code Example for Writing t0 the ITL BUFFEr ...t sessssssssssssnes
Figure 5-25: Code Example for Reading from the ITL Buffer.........cccocovnineniisiinenens

Figure 5-26: Host Controller in the Operational State Flow Chart
FIQUIE 5-27: PTD HEAURT FIEIUS. ......cvuiieeeeeieieicee ittt bbb
Figure 5-28: PTD Flow for the CONTIOl TIANSTEE ...ttt

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 6

ISP1161x Embedded Programming Guide

Figure 5-29: Data Toggle Bit Setting Example Across MUItIPIE PTDS ..o ssssssssssssessessessssssssenes
Figure 5-30: Data Toggle Bit Setting in Multiple PTD Data Packets .........c.ccccocoveneunee.

Figure 5-31: Typical List Structure ..........c........
Figure 5-32: List Processing Data Structure
Figure 6-1: Firmware Structure of the ISP1161x Device Controller.........ccccovovivineenee

FIgUIE 6-2: FIOWCNAIT OF ISR ......vivicicisiieiessss sttt s sttt
Figure 6-3: Code Example 0f @ TYPICAI ISR ... sttt sttt sssssesssssssessnssnes
Figure 6-4: Code Example to Read the Interrupt Register
Figure 6-5: Control FIags........c.ccoovvrermrnrreensssnseissssnesessseennns

Figure 6-6: State Machine of the CONIOl TANSTEL ..ot
Figure 6-7: Flowchart of the CoNtrol OUT HANGAIEN ...........cc.. ittt
Figure 6-8: Code Example to Check Status of the OUT Endpoint............cccconevivinienee

Figure 6-9: Code Example for Reading the Endpoint Status Register ...............cue....

Figure 6-10: Code Example for Reading the Contents of an OUT Buffer.................

Figure 6-11: Code Example for Reading the Endpoint Status Register ............cc......

Figure 6-12: Code Example to Check the Status of the IN Endpoint..........cccocovvnnnnee

Figure 6-13: Code Example for Writing the Contents to an IN Buffer ..........cc..ccoeeune..

Figure 6-14: Flowchart of the Control IN Handler ...

Figure 6-15: Code Example for Configuring a Bulk OUT or Bulk IN Endpoint
Figure 6-16: Function Definition of void SetEndpointConfig(UCHAR bEPConfig, UCHAR bEPINdex) .......c..cccccrvvveenee.
Figure 6-17: Flowchart of the BUlK OUT HANAIET ..ottt
Figure 6-18: Code Example for Reading the Endpoint Status REGISTET .........cccvvuvrivvinreiininreeesssssssees s sessessssssessnes
Figure 6-19: Code Example to Check the Status of the Bulk OUT Endpoint...........

Figure 6-20: Code Example for Reading the Contents of a Bulk OUT Buffer
Figure 6-21: Flowchart of the BUIK TN HANAIET .........cciririreisisreis s ssssssses s sssssesssssessesssssessssssssssssessessssseses
Figure 6-22: Code Example for Reading the Endpoint Status REGISTEN ..o eesnes
Figure 6-23: Code Example to Check the Status of the Bulk IN Endpoint...................

Figure 6-24: Code Example for Writing the Contents into a Bulk IN Buffer............

Figure 6-25: Code Example for Configuring an 1ISO OUT or ISO IN Endpoint..........ccccoernnninneneesssneeseeseenees 65
Figure 6-26: Function Definition of void SetEndpointConfig(UCHAR bEPConfig, UCHAR bEPINdex) .......ccccceorvvvvenn. 65
Figure 6-27: Flowchart of the 1SO OUT HANAIET ... ssssss s ssssessss s ssssssssssssessessssseses 66
Figure 6-28: Flowchart 0f the 1SO IN HANAIET ...ttt ssssesssssssssesssssessssssssssssessesssssenes 66
Figure 6-29: Code Example for Reading the Endpoint Status REGISTET .........cccvvvrivvnrieiinrnrnseessssssseesssssssssssssessesssssssssessnes 67
Figure 6-30: Code Example for Reading from an 1SO Endpoint BUFFer ... 67
Figure 6-31: Code Example for Writing to an 1SO Endpoint BUFFEr ... eeenees 67
Figure 6-32: FIOWChart Of the IMAIN LOOP ...ttt bbb bbb bbb 68
Figure 6-33: Code Example for Writing to the MOde REJISIET ...ttt
Figure 6-34: Code Example on Setting SoftConnect
Figure 6-35: Flowchart of Clear Feature ............cocovererrvrnerrernnen.

Figure 6-36: Code Example to Send Zero-Length PACKEL ... ssssessesessesssssssssesssssssssenes
Figure 6-37: Code Example to Stall or Unstall an ENAPOINT.........ccvvinirrniininreissssisiessssssssssesssssssssessesessessssssessssssssssssenes
Figure 6-38: Flowchart of Get Status........ccocvereenineineersinenennn,
Figure 6-39: Flowchart of Set Address .......cooueeveneeneevninenennn.
Figure 6-40: Code Example of the Set Address Routine...........
Figure 6-41: Flowchart of Get Configuration .............ccccocveueeen.
Figure 6-42: Flowchart of Get DesCriptor ........cocvvvverrerereneereinns
Figure 6-43: Flowchart of Set Configuration..........cccocvevvvnvreinns
Figure 6-44. Flowchart of Get Interface
Figure 6-45: Flowchart of Set Interface........

Figure 6-46: Flowchart of Set Feature ..........cccooevvininerninienenne.
Figure 6-47: CATC Capture 0f @ PIO OUT TIaNSTEE ......ciiiireiiireeeieisere ittt
Figure 6-48: CATC Capture 0f @ PIO IN TFANSTN ...ttt bbb
Figure 6-49: CATC Capture of an ISO OUT Transfer
Figure 6-50: CATC Capture of an ISO IN TTaNSTEr ...t ssssses st ssssssssssssssessesssssenes

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 7

ISP1161x Embedded Programming Guide Rev. 1.0

1. Introduction

ISP1161x (denotes ISP1161 and ISP1161A) is a single-chip Universal Serial Bus (USB) Host Controller (HC) and Device
Controller (DC) that complies with Universal Serial Bus Specification Rev. 2.0 (Full Speed). These two USB controllers—the
Host Controller and the Device Controller—share the same microprocessor bus interface. These controllers have the
same data bus, but different 1/0 locations. They also have separate interrupt request output pins, separate direct
memory access (DMA) channels that include separate DMA request output pins (DREQ) and DMA acknowledge input
pins (DACK). This makes it possible for a microprocessor to control both the USB Host Controller and the USB
Device Controller at the same time.

ISP1161x provides two downstream ports for the USB Host Controller and one upstream port for the USB Device
Controller. Each downstream port has its own overcurrent (OC) detection input pin and power supply switching control
output pin. The upstream port has its own Veus detection input pin. ISP1161x also provides separate wake-up input pins
and suspended status output pins for the USB Host Controller and the USB Device Controller, respectively. This makes
power management flexible. The downstream ports for the Host Controller can be connected to any USB compliant
USB devices and USB hubs that have USB upstream ports. The upstream port for the Device Controller can be
connected to any USB compliant USB host and USB hubs that have USB downstream ports.

The Host Controller is adapted from Open Host Controller Interface Specification for USB, Release: 1.0a referred to as OHCI in
the rest of this document.

The Device Controller is compliant with most device class specifications, such as Imaging Class, Mass Storage Devices,
Communication Devices, Printing Devices and Human Interface Devices. ISP1161x is well suited for embedded systems
and portable devices that require a USB host only, a USB device only, or a combined and configurable USB host and
USB device capabilities. ISP1161x provides high flexibility to the systems that have it built-in. For example, a system that
has ISP1161x built-in allows it not only to be connected to a PC or USB hub that has a USB downstream port, but also
to be connected to a device that has a USB upstream port, such as USB printer, USB camera, USB keyboard and USB
mouse, among others. ISP1161x enables point-to-point connectivity between embedded systems. An interesting
application example is to connect a ISP1161x Host Controller with a ISP1161x Device Controller.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 8

ISP1161x Embedded Programming Guide Rev. 1.0

2. ISP1161x Software Models

As ISP1161x can function in one of the three modes—host-only mode, device-only mode and simultaneous host-and-
device mode—each mode of operation adopts a different software model.

2.1. Host-Only Mode

The host-only mode software model consists of the host stack, one or more class drivers, zero or more device drivers,
and the application. Figure 2-1 shows the data flow and the call hierarchy of the software components in this software
model.

H| Application |

-+ Device Driver |

4—|-| Class Driver IJ

05

- Host Stack |

| Low-level System HW code & ISR |

¢ USEB Peripherals

=
— —
Ernbedded Sy=tem ¢
= -y
USE Dowrstream

Figure 2-1: ISP1161x Host-Only Mode Software Model

Since a single USB Host Controller can have multiple USB slave devices connected to it, the host-only mode software
model can contain multiple class drivers, in which each class driver services each type of USB slave device. Usually, the
application accesses class drivers directly to perform USB operations. However, in some cases, it makes sense to have
one more layer, dubbed Device Driver, between the class driver and the application. For example, you can have device
drivers for different types of printers in which these device drivers access one common USB printer class driver to
perform operations on printers.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 9

ISP1161x Embedded Programming Guide Rev. 1.0

2.2. Device-Only Mode

The software model for the device-only mode consists of the device stack, a class driver and the application. The data
flow and the call hierarchy of the software components in this software model are given in Figure 2-2.

| Application F—P

05

| Class Driver }H'
|DE'I|.|I'i[:E Stack }-—u

| Low-level System H/W code & ISR |

v

Tl |
|-

Ernbedded System
= [ |

E E USE Upstream ]‘

USB Host (PC)

Figure 2-2: ISP1161x Device-Only Mode Software Model

Since a USB slave device performs a single class of functions, there must only be one class driver for a USB slave device.
The application accesses the class driver when performing USB operations.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb



Connectivity
ISP1161x Embedded Programming Guide Rev. 1.0

2.3. Simultaneous Host-and-Device Mode

The most versatile mode of ISP1161x is the simultaneous host-and-device mode. The software model for this mode is
realized by combining the host-only mode and device-only mode software models into a single model. The resulting

software model is depicted in Figure 2-3.

H| Application | | Application |
++ Device Driver

05 H|I Class Driver |J | Class Driver |
- Host Stack | | Device Stack |

| Low-level System H\W code & ISR |

¢ USB Peripherals

=] = P

USB Host (PC) Embedded System

— a
. g USE Upstream |’ T USE Downstrean
S— . =T

L= - "—-_. T
e

Figure 2-3: ISP1161x Simultaneous Host-and-Device Mode Software Model

In this mode, ISP1161x functions as if there are separate USB Host and Device Controllers. The software model for this
mode requires no interdependencies between the host-side portion and the device-side portion of the software. In other
words, the device-side software runs totally independent of the host-side software.

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb



Connectivity 11

ISP1161x Embedded Programming Guide Rev. 1.0

3. I1SP1161x Hardware Models

3.1. Host Controller Hardware Model

The major difference between the OHCI Host Controller and ISP1161x is that the OHCI Host Controller is a bus-
master device whereas 1SP1161x is not. In the OHCI Host Controller, the USB data packet is sent from and received in
the system memory by the bus master DMA present in the OHCI Host Controller. However, in ISP1161x, the
microprocessor is responsible for moving the USB data packet between the system memory, and the ITL and ATL
buffers inside ISP1161x. An 1/0 bus interface and the bus master DMA are eliminated from ISP1161x, and therefore,
the term “slave Host Controller”. This is because ISP1161x is intended to be used for embedded applications in which
cost and design simplicity are important design considerations for choosing a Host Controller IC.

uP

System Memory

R N

ITL Buffer for
Isochronous ISP1161
PTD Header
PTD Payload
PTD Header
PTD Payload
PTD Header

System Bus

PTD Payload
PTD Header

PTD Payload

——p USB Bus
ATL Buffer for

Control, Bulk, Interrupt 4

Slave DMA or PIO Data Transfer

PTD Header
PTD Payload
L = = = = = = - - P PTD Header
' PTD Payload
PTD Header
PTD Payload
PTD Header
PTD Payload

Figure 3-1: ISP1161x Host Controller Hardware Model

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 12

ISP1161x Embedded Programming Guide Rev. 1.0

3.2. Device Controller Hardware Model

When the Device Controller part of ISP1161x is in operation, the microprocessor moves the USB packet data between
the system memory and endpoint FIFOs via Programmed 1/0 (P1O) or slave DMA built into ISP1161x. USB packets
are sent from and received in endpoint FIFOs.

uP

System Memory

. 0
7R >
c, oM
g : = ISP1161
o - 2
T (/?)‘ ‘ Endpoint 0 FIFO Hﬁ
D ]
o.
[a ] ‘ Endpoint 1 FIFO aﬁ
w 1
O
<§E : ‘ Endpoint 2 FIFO iﬁ
o
q) ]
A ' — USB Bus
n' '
] N Y
L mmmmm= - - = P '
‘ Endpoint 13 FIFO a—
‘ Endpoint 14 FIFO aﬁ

Figure 3-2: ISP1161x Device Controller Hardware Model

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 13

ISP1161x Embedded Programming Guide Rev. 1.0

4. |ISP1161x Software Architecture

4.1. USB Host Software Architecture

%

UsSBD
Interface

[
g

HCD

v U Interface

.

Tranzaclion Lisl Transactions HNISW

ansaclion Interface

Figure 4-1: USB Host Software Architecture

As can be seen in Figure 4-1, the USB host software architecture includes the Universal Serial Bus Driver (USBD), the
Host Controller Driver (HCD) and the client software. The client software can be the application code or USB class
drivers. The USBD and the HCD are collectively referred to as the USB host stack. In the USB host stack, the USBD
deals with hardware-independent protocol related aspects of USB whereas the HCD deals with hardware-dependent

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity

ISP1161x Embedded

protocol related aspects of USB. Therefore, it is the HCD that accesses the USB Host Controller hardware. In other

Programming Guide

words, the HCD drives the Host Controller by manipulating programmable hardware registers inside the Host
Controller. This document explains how to program the Host Controller hardware of ISP1161x to enable it to perform
HCD functions when it runs as a USB Host Controller.

4.2. Host Stack Architecture
Figure 4-2 shows the major functions built in a USB host stack.

Class Drivers

API Services for Class Drivers

Class Driver Data Transport Descriptor
Registration Services Management
Device Class Driver
Enumeration Management
| API Services for Bus Driver
- [ I I
ranslactlon Host Controller ISR
List .
. Enumeration Management
Processing

Hardware Access Management

USBD

HCD

Host Controller Hardware l

Figure 4-2: Host Stack Architecture

The typical sequence of calls that occurs when performing a USB transfer is as follows:

1. The application initiates a write or read over the USB bus.

The class driver calls USBD APIs for the write or read initiated by the application.
USBD APIs call HCD APIs on behalf of the calling class driver.

The class driver is notified that the transfer is complete.

2
3
4, HCD APIs cause USB transactions to occur.
5
6

The application is notified of the transfer completion.

14

Rev. 1.0

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb



Connectivity 15
ISP1161x Embedded Programming Guide Rev. 1.0

The following example shows the call sequence from the class driver to the USBD and the HCD in a host stack
implementation.

(In Class Driver)
st_URB_SEND_COMMAND stUrb;

stUrb.stHeader.uDeviceHandle = uDeviceHandle;
stUrb.stHeader.uAPIService = USBD_API_SEND_COMMAND;
stUrb.pbyBufferAddress = NULL;
stUrb.uBufferLength = 0O;

stUrb.uRequest = SET_IDLE;

stUrb.uDirection = USB_HOST_TO_DEVICE;
stUrb.uType = USB_TYPE_CLASS;
stUrb.uRecipient = USB_RECIPIENT_INTERFACE;
stUrb.uValueDesc = 2;

stUrb.uValuelndex = 0;

stUrb.ulndex = stMouse -> uSelectedInterface;
USBD_API((PVOID) &stUrb, &uRetval)

N

S USBD
st_ DEVICE_REQUEST stReq;

stReg.bmRequestType = pstUrb->uType;
stReq.byRequest = pstUrb-uRequest;
stReq.wValue = pstUrb->uValueDesc;
Host Stack stReqg.windex = pstUrb->uValuelndex;
stReg.wLength = pstUrb->uLength;

uStatus = HcdControlTransfer (uHandle, &stReq, 0, 0);

N\

HCD \

Figure 4-3: Host Stack Calling Sequence Example

In this example, the USBD_API() call (in the class driver box) is the calling mechanism for calling USBD APIs. The

HcdControl Transfer() function is one of the available HCD APIs and it does a control transfer.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb



Connectivity

ISP1161x Embedded Programming Guide

4.3. USB Device Software Architecture

Device

Application Data
Software
H @ Function
u Interface
Device
Function Transfers
Software
H Driver
w U Interface
Device
Controller Transactions
Driver
H HAL
w U Interface
USB Device Controller
Packets

uSB

Figure 4-4: USB Device Software Architecture

Rev. 1.0

A USB device is a slave device, and its job is to respond to requests sent by the host. The Device Controller Driver
responds to requests on its own, if these requests are standard requests, that is, USB standard requests. If these requests
are function specific, that is, class requests, the Device Controller Driver passes them to the device function software.
The device function software in conjunction with the device application software handle these requests and send

responses to the host. Logically, the Device Controller Driver interacts with the USBD on the host side and the device
function software interacts with the host class driver.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 17

ISP1161x Embedded Programming Guide Rev. 1.0

5. Programming the Host Controller of ISP1161x

5.1. Software Accessible Hardware Components
The major hardware components of the Host Controller in ISP1161x that are accessible by software are:

*  HC control and status registers
o ATL buffer
e ITL buffer.

5.2.  HC Control and Status Registers

The HC control and status registers in ISP1161x include a set of operational OHCI compliant registers (32-bit wide) and
a set of 1SP1161x specific registers (16-bit wide). Each read/write register has a set of two offset indices: one for the
read access and the other for the write access. Read-only or write-only registers have only one offset index. For
convenience, the command-write operation, can be ORed with 0x80, so that only one value is required to be defined for
each register. The offset indices for the HC control and status registers are given in Table 5-1.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity

ISP1161x Embedded Programming Guide

Table 5-1: HC Control and Status Register Summary

Rev. 1.0

Command (Hex) Register

Read
00
1
02

03
04
05
oD
0E
0F
11

12
13

MiA
2B

20
2E

41

Write
MNIA
81
a2
83
a4
a5
8D
MiA
MNIA
91
92
a3
a4
a5
96

z &5 ERBEE

A

& & & &

MiA
MiA
MIA
Co
Cc1

HeRevision

HeControl
HoCommandStatus
HelnterruptStatus
HelnterruptEnable
HelnterruptDisable

HeF minterval
HcFmRamaining
HeF mMNumbar
Hel SThreshold
HeRhDescriptors
HeRhDescriptorB
HeRhStatus
HcRhPortStatusg[1)
HcRhPortStatus[2)
HeHardwaraConfiguration
HeDMAConfiguration
HeTransfarCountar
HepPinterrupt
HepPlnterruptEnable
HeChiplD

HeScralch
HeSoftwaraRasal

Hel TLBufferLangth

HeAT LBufferLangth
HeBuffarStatus
HeReadBack| TLOLength
HeRaadBack| TL1Langth
HclTLEuffarPort

HcAT LBufferPort

Width Functionality

a2
a2
a2
a2
3z
3z

32
3z
32
a2
a2
a2
3z
3z
3z

HC Control and Status Ragisters

HC Frame Counter Registers

HC Root Hub Registers

HC DMA and Interrupt Conirol

Ragistars

HC Miscallaneous Redgistars

HC Buffer RAM Control Registers

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb



Connectivity

19

ISP1161x Embedded Programming Guide

52.1. Writing and Reading of the 16-Bit and 32-Bit Registers

Since the data bus in ISP1161x is 16-bit wide, 32-bit registers are read or written in two data cycles. Figure 5-1 illustrates

a 16-hit register access cycle.

write command
(16 bits)

-+«—— 16-bit register access cycle ——

Rev. 1.0

read/write data

(16 bits)

—»

data bus

Command code

Register data
(lower word)

Figure 5-1: 16-Bit Register Access Cycle

In Figure 5-1, a command code is the offset index of the register being accessed. Therefore, for example, to write a value
into the HcScratch register, the HCD will put the offset index of A8H on the data bus followed by a single 16-bit value.
To read the HcScratch register, the HCD will put the offset index of the register on the data bus and read a single 16-bit

data from the data bus.

—

-

write command

32-bit register access cycle

read/write data

read/write data

(16 bits) (lower 16 bits) (upper 16 bits)
— {
data bus Command code Register data Register data
(lower word) (upper word)

Figure 5-2: 32-Bit Register Access Cycle

To write to a 32-bit register, the HCD will put the offset index of the register on the data bus followed by two
consecutive 16-bit data. To read, the HCD will put the offset index of the register on the data bus and read two

consecutive 16-bit data from the data bus.

The sample code in Figure 5-3 shows a 32-bit register access with ISP1161x connected to an ISA bus in the x86
platform with two ISA ports assigned to the Host Controller of ISP1161x: the command and data ports.

#def i ne DATA_PORT 0x290

#defi ne COMMAND_PORT  0x292;

/1 Use the PC s I/0O address 0x290 for the Host Controller

/1 data port

/1l Use the PC's |/O address 0x292 for the Host Controller

/1 command port

unsigned long uReg, uRegData, uData;

The HcControl register writes the offset index.

uReg = 0x81;
uRegDat a = 0x00010020;

/1 HcControl wite is 0x81

Write the offset index to the command port.

out w( COMWWAND_PCRT, uReg) ;

Write data to the data port.
Write the lower 16-bit data first.

uData = uRegData & OxO0000FFFF;

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 20
ISP1161x Embedded Programming Guide Rev. 1.0
out W DATA PORT, uData);
Write the higher 16-bit data. For 16-bit register write, this step is not necessary.
ubData = (uRegData & OxFFFF0000) >> 16; /1 AND followed by right bit shift of 16 bits

out W( DATA_PORT, ubData);
Figure 5-3: Code Example for 32-Bit Register Write

In the preceding example, the command and data ports are 16-bit wide. The outw() function is an x86 assembly routine

that writes a 16-bit data to the specified port.

The following example code reads data from a 32-bit register.
unsi gned | ong uRegDat a;

The HcControl register writes the offset index.

uHcCont rol Reg = 0x01; /1 HcControl register read is 0x01

Write the offset index to the command port.

out w( COMVAND_PORT, uHcContr ol Reg);

Read the lower 16-bit data from the data port.

uData = i nw( DATA_PORT) ;

Save the lower 16-bit data.

uRegData = uData & OXO000FFFF;

Read the higher 16-bit data and concatenate the lower and higher 16-bit data.
For 16-bit read, this step is not required.

ubData = i nw( DATA_PORT) ;

uRegData | = (uData & OXO000FFFF) << 16;
Figure 5-4: Code Example for 32-Bit Register Read

The function inw() is an x86 assembly routine that reads a 16-bit data from the specified port.

The code example in Figure 5-5 reads a 16-bit value from a 16-bit register.

unsi gned | ong uRegDat a;

The HcScratch register reads the offset index.

uHcScr at chReg = 0x28;

Write the offset index to the command port.

out w( COMVAND_PORT, uHcScr at chReg) ;

Read the 16-bit register value from the data port.

uData = i nw( DATA_PORT) ;
Figure 5-5: Code Example for 16-Bit Register Read

The code example in Figure 5-6 writes a 16-bit value to a 16-bit register.

unsi gned | ong uDat a;

The HcScratch register writes the offset index.

uScrat chReg = OxAS8;
ubDat a = OxAA55;

Write the offset index to the command port.

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb




Connectivity 21

ISP1161x Embedded Programming Guide Rev. 1.0

out w( COMVAND_PORT, uScat chReg);

Write the 16-bit data to the data port.

out w( DATA_PORT, uData);
Figure 5-6: Code Example for 16-Bit Register Write

Throughout this document, pseudo function calls—WRITE_32BIT_REG(), READ_32BIT_REG(),
WRITE_16BIT_REG() and READ_16BIT_REG()—will be used in code examples to depict read/write access to
ISP1161x internal registers.

5.3.  Writing and Reading of the ATL and ITL Buffers

The ATL and ITL buffers are physically located in the FIFO buffer RAM inside ISP1161x. Each buffer contains a list of
PTDs that the Host Controller hardware uses to send or receive USB packets to or from USB slave devices. As part of
scheduling USB transfers, the HCD constructs PTDs in the system memory and then moves the constructed PTDs to
the ATL or ITL buffer. The Host Controller hardware allows software to access each buffer as if they are separate
hardware buffers. The HCD accesses the ATL buffer by using the hardware registers—HcTransferCounter (22H/A2H)
and HcATLBufferPort (41H/C1H)—and the ITL buffer by using HeTransferCounter and HelTLBufferPort (40H/COH).

The example code in Figure 5-7 shows how to write and read to and from the ATL buffer in the PIO mode.
void fnvl161Atl Wite(char * pbyChar, unsigned |ong uTotal Byte)
{

unsi gned | ong uTot al Doubl eWor d;
unsi gned | ong * pulLong;

unsi gned | ong ul ndex;

unsi gned | ong ubDat al;

unsi gned | ong uDat a2;

Program the 16-bit transfer counter register: HcTransferCounter. Make sure that bit 7 of the register offset
index is 1.

out W COMWAND_PORT, HcTransfer Counter | 0x80);
out w( DATA_PORT, uTot al Byte);

Express the total number of bytes to be transferred in terms of double word.
Typecast the byte aligned data buffer to double word aligned buffer.

uTot al Doubl eWord = uTotal Byte >> 2;
puLong = (unsigned long *) pbyChar;

Write the HcATLBufferPort register offset index to the command port.
Make sure that bit 7 of the register offset index is 1.

out w( COMMAND_PORT , HCATLBuUf f er Port | 0x80));

Wait a while before writing data bytes. Each iodelay() causes 1 system tick delay.
There must be a minimum of 300 ns delay between the command and data phases.

i odel ay();
i odel ay();
i odel ay();

Disable all hardware interrupts during the data write.
cli();
Write data to the ATL buffer by writing to the data port 16 bits at a time.

for (ulndex = 0; ulndex < uTot al Doubl eWord; ul ndex ++)

uDat al = puLong[ul ndex] & 0x0000FFFF;

ubDat a2 = (puLong[ul ndex] & OxFFFFO000) >> 16;

out w( DATA_PORT, ubDat al) ; /1 Wite lower 16-bit first
out w( DATA_PORT, ubDat a2) ; /1l Wite higher 16-bit

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity

ISP1161x Embedded Programming Guide

}

/1 There nust be a mininumof a 112 ns del ay between data phases.

iodel ay();

Rev. 1.0

Enable all hardware interrupts when the write is done.

sti();

Figure 5-7: Code Example for Writing to the ATL Buffer

5.4. Typical Hardware Initialization Sequence

When the ISP1161x hardware is powered on, the Host Controller Driver (HCD) must go through the following
hardware initialization steps to set the Host Controller into the operational state.

Note: In addition to the hardware initialization steps described later, the HCD must also initialize necessary data
structures in between the hardware initialization steps. The requirements for the initialization of data structures differ
depending on the underlying operating system and description of data structures is outside the scope of this document.

1. Detecting the Host Controller

2. Software resetting the Host Controller
Setting the Host Controller to the RESET state

a.

3. Configuring the HcHardwareConfiguration register

a
b.
c.
d.

Setting the interrupt output polarity

Setting the interrupt trigger mode between level triggered and edge triggered

Enabling the global interrupt INT1
Setting DMA related modes, if DMA is used

DACK input polarity
DREQ output polarity

4. Configuring interrupts

a.

b.

USB specific interrupts

i.
ii.
iii.
iv.
V.
Vi.

Vil.

Master interrupt enable

Root hub status change interrupt
Frame number overflow interrupt
Unrecoverable error interrupt
Resume detect interrupt
Start-of-Frame (SOF) interrupt

Scheduling overrun interrupt

Host Controller related interrupts

i.
ii.
iii.
iv.

V.

Clock ready interrupt

Host Controller suspend interrupt
OPR register interrupt

All EOT interrupt

ATL done interrupt

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 23

ISP1161x Embedded Programming Guide Rev. 1.0

vi. SOF ITL done interrupt

5. Configuring the HcControl register

a. Setting remote wake-up enable

b. Setting remote wake-up connected
6. Configuring the HcFminterval register
7. Configuring the root hub registers

a.  HcRhDescriptorA register

b.  HcRhDescriptorB register

c. HcRhStatus register
8. Setting the ITL and ATL buffer lengths
9. Installing the INTY interrupt service routine

10. Setting the Host Controller to the operational state.

54.1. Detecting the Host Controller

The detection of the Host Controller is done by the HCD by writing a value to the HcScratch register (see Table 5-2),
reading from the HcScratch register and comparing the expected and actual values of the register. If the two values match,
the HCD concludes that the Host Controller is present. The correct HeChiplD read can also be used as an extra
condition for detection of the Host Controller.

Table 5-2: HcScratch Register: Bit Allocation
READ INDEX—28H; WRITE INDEX—A8H

Bit 15 14 13 12 11 10 9 ]
Symbol Scratch[15:8]

Reset L1 4] 1] [4] o i 0 0
Access RWwW

Bit T [ 5 4 3 2 1 1]
Symbol Seratch[7:0]

Reaset o 4] 1] 4] o o i} 0
Access R

The pseudocode for detecting an 1SP1161x Host Controller is given in Figure 5-8.

WRI TE_16BI T_REG( HCScr at ch, OX55AA);
ubData = READ_16BI T_REG HcScrat ch)

if (uData == O0x55AA)
{
uData = READ 16BI T_REG HcChi pl D)
/1 The high byte of the chip ID for |SP1161x.
if (uData & O0xFF00) == 0x6100
f oundl SP1161x;

el se
Not Found! SP1161x;

Figure 5-8: Code Example for Detecting the Host Controller

54.2. Software Resetting the Host Controller
The software reset of the Host Controller involves two steps:

1. Resetting the Host Controller

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 24

ISP1161x Embedded Programming Guide Rev. 1.0

2. Setting the Host Controller to the RESET state.

The HCD resets the Host Controller by setting the HCR bit in the HcCommandStatus register (see Table 5-3). Since it
takes a while (about 10 ps) to reset the Host Controller, the HCD must wait for at least 10 ps before it proceeds. A
pseudocode for resetting the Host Controller is given in Figure 5-9.

/! Read the contents of the HcCommandStatus register.
uVal ue = READ 32BI T_REGQ HcCommandSt at us) ;

/1 Set the HCR bit
uVal ue | = 0x00000001;

WRI TE_32BI T_REG hcConmandSt at us, uVal ue);

/1 Wait until reset is done. Wien reset is done, the HCR bit is set to logic O.
Wi | e (READ_32BI T_REG HcConmandSt at us & 0x00000001) ) ;

Figure 5-9: Code Example for Resetting the Host Controller

Table 5-3: HcCommandStatus Register: Bit Allocation
READ INDEX—02H; WRITE INDEX—82H
Bit # 30 29 28 ) 26 25 24

Symbaol rasarved

Reseat ooH

Access R

Bit 23 22 21 20 19 18 17 16
Symbaol resarved SOCM:0)
Reset 0 0 1] 0 0 0 Q 0
Access R 34

Bit 15 14 13 12 11 10 9 8
Symbaol rasared

Reset 0oH

Access R

Bit 7 L 5 4 3 2 1 0
Symbaol rasarved HCR
Reset 0 0 1] ] 0 0 i} 0
Access R

Once the Host Controller is reset, the HCD must set the Host Controller to the RESET state by writing 00B to the
HCEFS field in the HcControl register (see Table 5-4). This step completes resetting of the Host Controller.

uVal ue = READ 32BlI T_REG HcControl);

/1 When writing a new value to the HcControl register, the state of other bits in the register
/1 must be preserved by witing 1 to the bits already set to 1 in the register.

uVal ue &= ~0x000000C0;

// 00B in bit[7:6] => RESET state
uVal ue | = 0x00000000

WRI TE_32BI T_REG (HcControl, uVal ue);

Figure 5-10: Code Example for Setting the Host Controller to the RESET State

Table 5-4: HcControl Register: Bit Allocation
READ INDEX—01H; WRITE INDEX—S81H

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb



Connectivity 25
ISP1161x Embedded Programming Guide Rev. 1.0

Bit 3 30 b 28 7 26 25 24

Symbol raserved

Raset 0oH

Access RW R R RN R R R RW

Bit 23 22 21 20 19 18 17 16

Symbol raservad

Reset 0oH

Access RW RAN R RN R R R RW

Bit 15 14 13 12 11 10 9 ]

Symbol resarvad RWE RWC reserved

Reset 0 0 0 0 0 0 ] 1]

Access RMW RAW R RN R R R RW

Bit 7 6 5 4 3 2 1 ]

Symbol HCFS[1:0] resarved

Reset 0 0 0 ] 0 0 i 1]

Access RMW RAW R RN R R R RW

HCFS (Host Controller Functional State)—Bits[7 to 6]
* 00B—RESET

* 01B—RESUME

» 10B—OPERATIONAL

* 11B—SUSPEND.

5.4.3.

Configuring the HcHardwareConfiguration Register

This register controls the characteristics of the Host Controller hardware behavior. The bit settings in this register vary
depending on how the system board is designed. All bits except bits[12:10] have a power-up value. Bits[12:10] must be
set properly depending on how the system board is designed. The bit[0] controls the state of the INT1 pin of the Host
Controller, which is the interrupt output pin for the Host Controller side of ISP1161x. For interrupts to be enabled in
the Host Controller, the bit[0] must be set. With the bit[0] of the HcHardwareConfiguration register set to logic 1, the bits
in the HepPlInterruptEnable register control the activation of each interrupt available in the Host Controller.

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb



Connectivity 26
ISP1161x Embedded Programming Guide Rev. 1.0
Table 5-5: HcHardwareConfiguration Register: Bit Allocation
READ INDEX—20H; WRITE INDEX—AOH
Bit 15 14 13 12 11 10 9 8
Symbol resarvad 2 Down Suspend AnalogOC  reserved  DACKMode
streamPort  ClkMotStop Enable
15K
rasistorsel
Reset 0 ] 0 0 0 ] 0 0
Access R RN R R R R
Bit 7 6 5 4 3 2 1 ]
Symbol EQTInput  DACKInput DREQOuw DataBusWidth InterruptOut  InterruptPi  InternuptPin
Polarity Puolarity putPolarity putPolarity  nTrigger Enabla
Reset 0 0 0 0 1 0 0 0
Access R R R Riw R R R

The bit description of the HcHardwareConfiguration register is given in Table 5-6.

Table 5-6: HcHardwareConfiguration Register: Bit Description

Bit
151013
12

11

4103

Symbol

2_DownstreamPort1 SKresistorSal

SuspendCIkNotStop

AnalogOCEnable

DACKMaode

EQTInputPolarity

DACKInpuiPolarity

DREQOutputPolarity

DataBusWidth[1:0]

I nterruptOutputPolarity

InterruptPinTrigger

IntesTuptFinEnable

Description
rasarvad

0 — uze axtarnal 15 k2 resistors for downsiream pors

1 — use buill-in resisiors for downstream poris

0 — Clk can be stopped

1 — clock can not ba stoppad
0 — usa axtarnal OC detaction. Digital input
1 — use on-chip OC detection. Analog input

rasarvead

0 — normal operation. DACK 1 is used with read and writa signals.

Powear-up valua.
1 = resarved

0 — active LOW. Powoar-up valusa

1 — active HIGH
0 = active LOW. Power-up value
1 — active HIGH
0 — active LOW

1 — active HIGH. Power-up valug

01 = 16 bits
Others — raserad

0 — active LOW. Power-up valua

1 — activa HIGH

0 — interrupt is leval-iriggered. Power-up value
1 — Interrupt is edge-riggared.

0 — power-up valug

1 — pin Global Interrupt INT1 is anablad

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb



Connectivity 27

ISP1161x Embedded Programming Guide Rev. 1.0

In the ISA-based ISP1161x evaluation board, all bit fields can be set to power-up values except the
InterruptOutputPolarity bit. The interrupt output polarity is active HIGH. The following code example programs the
HcHardwareConfiguration register for the ISA-based 1SP1161x evaluation board connected to a personal computer (PC)
motherboard.

#def i ne | NTERRUPT_PI N_ENBLE 0x0001 // INT1 pin in | SP1161x
#def i ne | NTERRUPT_QUTPUT_POLARI TY 0x0004 // Active HCH
ULONG uDat a;

/! Read the register.
ubDat a = READ_16BI T_REQ HcHar dwar eConf i gurati on);

/1 Active H GH enabl es global interrupt pin INT1.
uData | = (| NTERRUPT_PI N_ENABLE | | NTERRUPT_OUTPUT_POLARI TY);

WRI TE_16BI T_REG HcHar dwar eConf i gurati on, uData);

Figure 5-11: Code Example for Initializing the HcHardwareConfiguration Register

5.4.4, Configuring Interrupts

The Host Controller in ISP1161x has two groups of interrupt sources. The first group includes interrupts generated by

USB events, such as Start-of-Frame, scheduling overrun and root hub status change. The occurrence of these interrupts
is controlled by the combination of the HclinterruptEnable and HclnterruptDisable registers, and the status of each of these

interrupts is indicated in the HclnterruptStatus register.

Table 5-7: HclInterruptEnable Register: Bit Allocation
READ INDEX—04H; WRITE INDEX—84H

Bit H 30 29 28 27 26 25 24
Symbol MIE resarvad 3 e
Reset 1] 0 0 ] 1] 0 i 0
Access RwW

Bit 23 22 | 20 19 18 17 16
Symbaol rasarved

Reset 0oH

Access RwW

Bit 15 14 13 12 11 10 9 ]
Symbaol rasarved

Reset 0oH

Access RwW

Bit T 6 5 4 3 2 1 ]
Symbaol reserad RHSC FNO LIE RD 5F resanvead 50
Reset 1] 0 0 ] 1] 0 i 0
Access RwW

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb



Connectivity 28

ISP1161x Embedded Programming Guide Rev. 1.0

The second group includes interrupts that occur as a result of changes in the state of the Host Controller. For example,
the suspension of the Host Controller generates an interrupt. Also, any combination of interrupts in the first group is a
source for an interrupt included in the second group. Figure 5-12 shows the relationship between these two groups of
interrupts.

HelrtermuptStatus

- HouPInterrupt
ragiatar ragiater
=0 BOFITL
5F X
ATL
A0 AllEOT —|
LE
OFR Reg
FMO
HoSuspand
RHEC
ClkReady
I FULSE |
INT Enabila GENERATOR
S0 SOFITL IE INT Trigger
= E * ATLIE INT Polarity ;
RO IE .
AIlECT IE _ [y
JEIE OPR Rag IE - 0
L ]
FNOTE HeSuspeand IE
RASCIE ClkReady IE HeHardwareConfiguradion
HelnterrupiEnakle registar IMTA
registar HeuPlnterruptEnable
register

MG T

Figure 5-12: ISP1161x Host Controller Interrupt Logic

As can be seen in the block diagram, the propagation of the first group of interrupts that can be enabled via the
HclnterruptEnable register is controlled by the OPRInterruptEnable bit in the HepPInterruptEnable register (see Table 5-8).

Table 5-8: HcuPInterruptEnable Register: Bit Allocation
READ INDEX—25H; WRITE INDEX—AG5H

Bit 15 14 13 12 11 10 9 8

Symbol raservad

Reset 0oH

Access RW

Bit 7 G 5 4 3 2 1 0

Symbol raserved ClkRaady HC OPR ragarvead EQT ATL 30F
Suspended  Interrupt Interrupt Intarrupt Interrupt

Enakbila Enable Enabla Enakbila Enabla
Reset 0 0 0 ] 0 o 0 o
Access RAW

When initializing the interrupts available in the Host Controller of 1SP1161x, it is recommended that you initialize the
interrupts in the HepPinterruptEnable register before initializing the interrupts in the HelnterruptEnable register. The
following code segment initializes all the interrupts in the Host Controller.

#defi ne OPR_Reg 0x0010
#defi ne SOFI TLI nt 0x0001

/1 Cear all pending interrupts.
WRI TE_16BI T_REG( Hce Pl nt errupt, OXFFFF);

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb



Connectivity 29

ISP1161x Embedded Programming Guide Rev. 1.0

/1 Enable the OPR and SCF interrupts.
WRI TE_16BI T_REG( HcdPI nt errupt Enabl e, OPR Reg | SOFI TLInt);

/1 Disable all USB specific interrupts.
WRI TE_32BI T_REG Hcl nt er rupt Di sabl e, 0x0000007F) ;

#define SF 0x00000004
#define RHSC  0x00000040
#define ME 0x80000000

/! Enable the SOF and Master Interrupts.
WRI TE_32BlI T_REG(Hcl nterrupt Enable, SF | RHSC | ME);

Figure 5-13: Code Example for Initializing the Host Controller Interrupt

To clear pending USB specific interrupts (that is, the first group of interrupts), a value of 1 must be written to the
interrupt bit position to be cleared in the HelnterruptStatus register (see Table 5-9). For example, the following code clears
the root hub status change (RHSC) interrupt bit;

WRI TE_32BI T_REQ Hcl nt errupt St atus, RHSO);

Table 5-9: HclnterruptStatus Register: Bit Allocation
READ INDEX—03H; WRITE INDEX—83H

Bit 31 30 23 28 27 26 25 24
Symbaol raservad

Resat Q0H

Access R

Bit 23 22 21 20 18 18 17 16
Symbal raservad

Resat 00H

Access R

Bit 15 14 13 12 11 10 ] B
Symbal raservad

Resat 00H

Access R

Bit T L] 5 4 3 2 1 L]
Symbal resanved RHSC FNO UE RO 5F resarved 50
Resat o] a o a ] 1] ] a
Access Fu

To clear pending Host Controller related interrupts (that is, the second group of interrupts), a value of 1 must be written
to the interrupt bit position to be cleared in the HcuPlInterrupt register (see Table 5-10). For example, the following code
clears the OPR_Reg interrupt:

WRI TE_16BI T_REG Hce Pl nterrupt, OPR Reg);

Table 5-10: HcpPInterrupt Register: Bit Allocation
READ INDEX—24H; WRITE INDEX—A4H

Bit 15 14 13 12 11 10 2] B

Symbal rasarved

Resat 0oH

Access R

Bit 7 L] 5 4 3 2 1 1]

Symbal resanved ClkReady HC OFR_Reg resaned AIECT ATLInt SOFITLIRE
Suspanded Interrupt

Rasel o] a o] a o Ju] o Q

Accass Ry

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 30

ISP1161x Embedded Programming Guide Rev. 1.0

Note: Since ISP1161x is a frame-based slave Host Controller, the microprocessor must update Philips Transfer
Descriptors (PTD) in the ATL and/or ITL buffers for every frame. It is strongly recommended that the SOFITL Int
interrupt (enabled in the HepPInterruptEnable register) in conjunction with the SF interrupt (enabled in the
HclnterruptEnable register) be used as a means to update PTDs in the ATL and ITL buffers. When the SOFITLInt
interrupt is used, the ATLInt interrupt must be disabled because enabling the ATLInt interrupt results in two interrupts
occurring in every frame.

5.4.5. Configuring the HcFminterval Register

The recommended values for Framelnterval (FI) and FSLargestDataPacket (FSMPS) are 0x2EDF and 0x2778,
respectively. Therefore, the following code will write these two values to the register.

WRI TE_32BlI T_REG( HcFm nt erval , Ox2EDF | (0x2778 << 16));

Table 5-11 HcFmInterval Register: Bit Allocation
READ INDEX—O0DH; WRITE INDEX—8DH

Bit £ 30 28 28 Fa 26 25 24
Symbal FIT FEMFS[14:8]

Resat o] a o a 0 1] 0 1]
Access RN R

Bit 23 22 21 20 18 18 7 16
Symbal FSMPE[T:0]

Resat o] a o a ] a ] a
Access R

Bit 15 14 13 12 11 10 ] B
Symbaol resarved Fi[13:8]

Reset 8] 1] 1 i) 1 1 1 Q
Access Rw Rw

Bit ¥ L] 5 4 3 2 1 o
Symbal FI[7:0]

Resat 1 1 o] 1 1 1 1 1
ACcess R

5.4.6. Configuring Root Hub Registers
At the time of initialization, the following three root hub specific registers must be initialized: HcRhDescriptorA,
HcRhDescriptorB and HeRhStatus.

In the HeRhDescriptorA register (see Table 5-12), all bit fields except the DT bit are implementation specific (1S). For the
ISA-based ISP1161x evaluation board, the following bit fields must be initialized as given:

*  The recommended value for the POTPGT (PowerOnToPowerGoodTime) field is 25, which gives 50 ms power-
on-to-power-good time.

»  The OCPM (OverCurrentProtectionMode) bit must be set to logic 0 because the overcurrent status is reported
collectively for all downstream ports.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb



Connectivity

ISP1161x Embedded Programming Guide

Table 5-12: HcRhDescriptorA Register: Bit Allocation
READ INDEX—12H; WRITE INDEX—92H

Bit | 30 29 28 27 26 25 24
Symbol POTRPGT[T:0]

Reset 15

Access R

Bit 23 22 21 20 18 18 17 16
Symbal raservad

Resat QoH

ACcess R

Bit 15 14 13 12 11 10 ] ]
Symbaol resarvad NOCP P oT MPS PSM
Reset o a o 15 15 a 15 15
Access R R R R R R
Bit 7 L] 5 4 3 2 1 ]
Symbal resanved NOP[1:0]
Resst o a o a o a 15
Access R H

The code example to initialize the HcRhDescriptorA register for the ISA-based ISP1161x evaluation board is given in

Figure 5-14.

#def i ne PONER_ON_TO PONER GOOD TI ME 50
uData = 0;

ULONG

uData = 0x00000200 ;

/1 Must use an even val ue.
ubData | = ((PONER_ON_TO PONER GOOD TIME /| 2) << 24);

WRI TE_32BI T_REG (HcRhDescri ptorA, uData);

Figure 5-14: Code Example for Initializing the HcDescriptorA Register

With the HcRhDescriptorA register initialized, the LPSC (LocalPowerStatusChange) bit in the HcRhStatus register (see
Table 5-13) must be set to logic 1 to turn on power to all ports because the power switching mode is set to global
power-on in the HcRhDescriptorA register. All other bits in the HcRhStatus register are set to logic 0.

/1 LPSC <= 1

ubData = 0x00010000

WRI TE_32BI T_REG HCRnSt at us, uData);

Figure 5-15: Code Example for Initializing the HcRhStatus Register

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity

ISP1161x Embedded Programming Guide

Table 5-13: HcRhStatus Register: Bit Allocation

READ INDEX—14H; WRITE INDEX—94H

Bit £ 30 ] 28 7 286 25 24
Symbaol CRWE resanved

Resat o o

ACcess W R

Bit Z3 22 21 20 18 18 7 16
Symbal resanved CCIC LPSC
Resat o] o 1]
Access R R R
Bit 15 14 13 12 11 10 ] B
Symbal DRWE resanved

Resat o] a ] a o 1] o 1]
Access RN H

Bit T L] 5 4 3 2 1 0
Symbal resaned (s LPS
Resat o] a o a ] 1] ] 1]
Access R R R

For the ISA-based 1SP1161x evaluation board, the PPCM field (see Table 5-14) must be set to logic 0 because the power
switching mode is global power-on and the DR field (see Table 5-14) must also be set to logic 0 because devices can be
detached from the root hub ports.

The code example to initialize the HcRhDescriptorB register is as follows:
WRI TE_32BI T_WRI TE( HcRhDescri pt or B, 0x00000000) ;

Table 5-14: HcRhDescriptorB Register: Bit Allocation
READ INDEX—13H; WRITE INDEX—93H

Bit i 30 28 28 i 26 25 24

Symbal resarvad

Reset - - - - - - -

Access - - - - - - -

Bit 23 22 21 20 18 18 7 16

Symbol reserved PPOM[2:0]

Reset - - . - . IS

Access - - - - - R Rw R

Bit 15 14 13 12 11 10 ) a8

Symbaol resarvad

Reset - - - - - - -

Access - - - - - - -

Bit T (] 5 4 3 2 1 ]

Symbol reserved DR[20)

Reset - - - - - 15

Access - - - - - R Rw R
54.7. Setting the ITL and ATL Buffer Lengths

The Host Controller in ISP1161x has 4 kbytes of internal FIFO buffer RAM that can be divided into the ATL and ITL
buffers by the HCATLBufferLength and Hel TLBufferLength registers. The ITL buffer is further divided into the ITLO and
ITL1 buffers of equal size, programmed in the HcI TLBufferLength register, to form a ping pong structure. At minimum,
the ATL buffer must exist because the ATL buffer is used for the control, interrupt and Bulk transfers. The presence of

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb



Connectivity 33

ISP1161x Embedded Programming Guide Rev. 1.0

the ITL buffer is optional. The following code example sets the ATL buffer length to 2 KB and the ITL buffer length to
2 KB, which results in the ITLO and ITL1 buffers being 1 KB each.

VRl TE_16BI T_REG( Hcl TLBUf f er Lengt h, 1024);
VR TE_16BI T_REG HCATLBUf f er Lengt h, 2048);

Figure 5-16: Code Example for Setting the ATL and ITL Buffer Lengths

5.4.8. Installing INT1 Interrupt Service Routine

If one or more interrupts occur in the Host Controller, the microprocessor is alerted of interrupts through the INT1 pin
in ISP1161x. The INT1 pin is usually connected to an interrupt controller through which the microprocessor receives an
interrupt from ISP1161x. In the ISA-based ISP1161x evaluation board, the INT1 pin is an input to the two-chip
cascaded 8259A programmable interrupt controller (PIC) in the PC motherboard. On the ISA-based ISP1161x
evaluation board, the INT1 pin is usually set to IRQ10. When the ISP1161x evaluation board is used in the PC
motherboard, the HCD must program the 8259A PIC so that the INT1 pin is connected to the IRQ10 channel in the
PIC. The following code example programs the cascaded PICs on the PC motherboard.

#defi ne Pl C1_OCw 0x21 /1 1SA port address for operation control word 1 in the
/Il first PIC

#defi ne Pl C2_OCw OxAl /1 1SA port address for operation control word 1 in the
// second PIC

voi d configurePl C (ULON ul rqLevel )

{

ULONG Pl CvaskBit[1={1, 2, 4, 8, 16, 32, 64, 128};
ULONG ubDat a;

ULONG ul nt Port;

/| Set the mask bit for the corresponding | RQ | evel.

/ Read the current nask bits fromthe operation control word 1 in PIC
/ and set the mask bit for the IRQ level for |NT1.

f (ulrgLevel < 8)

{

/1 1f the IRQlevel for INT1l is between | RQD and | RQ7
ubData = (ULONG inb(PICl_OCW);

uData | = PicMaskBit[ul ntLevel ];

out b(PI C1_OCWL, uData);

el se
/1 1f the IRQlevel for INT1 is between | R@ and | RQL5
ubData = (ULONG inb(PI C2_0OCW);
uData | = PicMaskBit[ulrgLevel - 8];
out b(PI C2_OCWL, uData);
}
/1 Set the interrupt triggering node to level triggering by setting the appropriate bit
/1 in the ELCR register in the PIC
if (ulrgLevel < 8)

ul nt Port = 0x4d0;
ul nt Port = 0x4d1;
ulrqLevel -= 8;

}

uData = (ULONG inb(ulntPort);

uData | = PicMaskBit[ul ntlLevel];
out b(ul ntPort, uData);

}

Once the interrupt controller is properly configured, an interrupt service routine must be installed for the target interrupt
request level. The facility to connect an interrupt service routine to a particular interrupt request level is usually provided
by the host operating system. For example; in Linux®, the system call request_irg() is used to install an interrupt service
routine.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 34

ISP1161x Embedded Programming Guide Rev. 1.0

5.4.9. Setting the Host Controller to the Operational State

The next step in initializing the Host Controller is to set the Host Controller to the “operational” state from the “reset”
state. The transition from the “operational” state to the “reset” state causes the Host Controller to start generating Start-
of-Frame (SOF) at 1 ms intervals. The following code sets the Host Controller to the “operational” state.

uVal ue = READ 32BI T_REQ HcControl);

/1 When writing a new value to the HcControl register, the state of the other bits in the
/1 register nust be preserved by witing O to the bits already set to logic 1 in the register.

uVal ue &= 0x000000C0;

/1 10B in bits[7:6] => QOperational state
uVal ue | = 0x00000080

WRI TE_32BI T_REG (HcControl, uVal ue);

Figure 5-17: Code Example for Setting the Host Controller to the Operational State

5.4.10. Setting the Host Controller to Perform USB Enumeration

Upon setting the relevant registers as mentioned earlier, the Host Controller is ready to perform USB enumeration. For
more detailed information on USB enumeration, refer to the Universal Serial Bus Specification Revision 2.0 (full-speed).

The pseudocode is as follows.

/1 Perfornms enuneration of the USB device connected to | SP1161x //
if (HcRhPortStatus[i] & 0x00000001) // Detection of the connected device

{
wai t _ms(100); // Wait at least 100 ns to allow conpletion of insertion
wite_32bit_reg(HcRhPort Status[i], 0x00000010); /1 Set port reset
wai t _ns(10); /1l Wait for reset recovery time. Mn is 10 ns.
port _enabl e(); /'l Set HcRh registers to enable USB ports
write_32bit_reg(HcRhPort Statusl, 0x00000102); // Set Portl PortEnabl eStatus and
/1 PortPowerStatus to ‘1’
write_32bit_reg(HcRhPort Status2, 0x00000102); // Set Port2 PortEnabl eStatus and
/1 PortPowerStatus to ‘1’
write_32bit_reg(HcRhDescri pt or A, 0x00000B01); // Set Number DownstreanPort,
/] OCProtection etc. to ‘1’
write_32bit_reg(HcRhDescri pt or B, 0x00000000); // Device renovabl e and control
/1l by d obal power switch
voi d set _address(ol d_addr, new_ addr); /1 A uni que devi ce address has been assigned

{

/1 Send out first control Setup packet

make_control _ptd(cbuf_ptr, SETUP, 0, 0, 8, 0, old_addr);
send_control (cbuf _ptr,rb_ptr, 0x0500, new_addr, 0x0000, 0x0000) ;

/1 Send out control Status packet
make_control _ptd(cbuf_ptr,IN0,0,0,1, ol d_addr);
send_control (cbuf _ptr, rb_ptr, 0x0000, 0x0000, 0x0000, 0x0000); // Send zero-length packet to
/'l conplete transfer

}
voi d set_config(int addr,int config) /1 Configure the device

/1 Send out first control Setup packet
make_control _ptd(cbuf_ptr, SETUP, 0, 0, 8, 0, addr) ;
send_control (cbuf _ptr,rb_ptr, 0x0900, confi g, 0x0000, 0x0000) ;

/1 Send out control Status packet

make_control _ptd(cbuf_ptr,IN 0,0,0,1, addr);

send_control (cbuf_ptr,rb_ptr, 0x0000, 0x0000, 0x0000, 0x0000); // Send zero-length packet to
/1 conplete transfer

voi d make_control _ptd(unsigned int *rptr, char type_ptd, char |ast,char ep,unsigned int nmax, char
t og, char addr)

pt d2send. Conpl et et i onCode=0x0; /1 Set Conpletion Code = 0000. No Errors.
pt d2send. act 1 ve_bi t=1; /1 Enabl e execution of transactions by the Host Controller.
pt d2send. t oggl e=t og;

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 35

ISP1161x Embedded Programming Guide Rev. 1.0
pt d2send. Act ual Byt es=0; /1l Set to zero. This field is filled by the Host Controller to

/1 reflect how many bytes are sent or received.
pt d2send. endpoi nt =ep;
ptd2send. | ast _pt d=1;
pt d2send. speed=port 1speed; /1 1ndicates speed of the endpoint
pt d2send. MaxPacket Si ze=nax;
pt d2send. Tot al Byt es=nax;
pt d2send. pi d= type_ptd;
pt d2send. f or mat =0;
pt d2send. f m=0;
pt d2send. Funct i onAddr ess=addr ;

c_ptd[0] = (ptd2send. Conpl et eti onCode &0x0000) <<12
| (pt d2send. acti ve_bit &0x0001) <<11
| (ptd2send. toggl e &0x0001)<<10 // Shift bit 10 bits to the left
| (ptd2send. Act ual Byt es &0Ox03FF); // 10 bits of Actual Bytes in bytes 0 and 1

/1 of PTD
c_ptd[1] = (pt d2send. endpoi nt &0x000F) <<12
| (ptd2send. | ast _ptd &x0001) <<11
| (pt d2send. speed &0x0001) <<10
| (pt d2send. MaxPacket Si ze&x03FF); // 10 bits of MaxPacketSize in bytes 1 and 2
/1 of PTD
c_ptd[ 2] = (0x0000 &0x000F) <<12
| (ptd2send. pi d &0x0003) <<10
| (pt d2send. Tot al Si ze &Ox03FF) ; /1 10 bits of Total Size in bytes 3
/1 and 4 of PTD
c_ptd[3] = (ptd2send. fm &OX00FF) <<8
| (ptd2send. format  &0x0001) <<7
| (ptd2send. Funct i onAddr ess &0Ox007F) ;

void send_control (unsigned int *a_ptr,unsigned int *r_ptr,unsigned int dO,unsigned int
d1, unsi gned int d2,unsigned int d3)

abuf[ 0] =*(a_ptr+0);
abuf [ 1] =*(a_ptr+1);
abuf [ 2] =*(a_ptr+2);
abuf[3] =*(a_ptr+3);

abuf [ 4] =dO;

abuf [ 5] =d1;

abuf [ 6] =d2;

abuf [ 7] =d3;

npt r =abuf ;

wite_atl(nptr,8); /Il Wite 16 bytes

do
i f(portlspeed==1){read_atl (r_ptr, 8);} /! Read 16 bytes
i f(portilspeed==0){read_atl (r_ptr, 36);} /!l Read 72 bytes
active_bit=(*r_ptr) & 0x0800); /1 Check active bit. The Host Controller sets the

// bit to 0 after PTD is finished

active_bit=active_bit>>11;
cnt--;
pwait(wait_tinme);

whi | e((cnt >2) &% (active_bit!=0));

void wite_atl (unsigned int *a_ptr, unsigned int data_size)

write_register16(Conl6_HcTransf er Count er, data_si ze*2);

out port (g_1161_conmand_addr ess, Coml6_HcATLBuf f er Port | 0x80) ;
cnt =0;

do

outport(g_1161_data_address, *(a_ptr+cnt));
cnt ++;

V\}ﬂ | e(cnt <(data_size));

void read_atl (unsigned int *a_ptr, unsigned int data_size)

write_register16(Conl6_HcTransf er Count er, dat a_si ze*2);
out port(g_1161_conmand_addr ess, Conl6_HcATLBuf f er Port);
cnt =0;
do

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 36

ISP1161x Embedded Programming Guide Rev. 1.0

{
*(a_ptr+cnt) =i nport(g_1161_dat a_address);
cnt ++;

\M}wi le(cnt<(data_size));

5.5.  Host Controller Driver Operation Flow

The Host Controller Driver (HCD) has two functions. First, the HCD builds PTDs in a certain data structure in the
system memory on being called by a higher-level component, such as the USB bus driver through its API functions.
Second, the SOFITLInt interrupt service routine moves any “done” PTDs from the ATL and/or ITL buffers into the
system memory and furthermore, moves pending PTDs from the system memory to the ATL and/or ITL buffers. The
SOFITLInt interrupt service routine is invoked once every frame because of the SOFITLInt interrupt (see Section
5.4.4). Once the ATL and/or ITL buffers are updated, the Host Controller hardware resumes processing of PTDs in the
two buffers when a new frame begins.

5.6.  Accessing the ATL Buffer

The HCD can access the ATL buffer to update PTDs only when the Host Controller hardware stops scanning the
buffer. The hardware stops scanning the ATL buffer under the following two conditions:

e When all the PTDs in the ATL buffer are done (The active bit in the PTD header is set to logic 0.).
Or,

*  When an ATLInt interrupt occurs; meaning that the ATL buffer scanning duration expires (FSMPS[14:0] has the
value of the duration). The FSMPS[14:0] duration is typically about 85% of the duration of a 1 ms frame.

56.1. Using SOFITLInt Versus ATLInt

If the ISP1161x Host Controller is used for only Bulk or interrupt or both devices, the programmer has the choice of
using either the SOFITLInt or ATLInt interrupt as an indication to access the ATL buffer. However, for isochronous
devices, the SOFITLInt interrupt must be used because the ATLInt interrupt cannot detect 1 ms frame boundaries.

It is, therefore, strongly recommended that you enable only the SOFITLInt interrupt when building a host stack that
supports all USB device types. Otherwise, there will be two interrupts—SOFITLInt and ATLInt—for every 1 ms frame.

The following timing diagram illustrates a flow of events in the context of the HCD and hardware when the ATLInt
interrupt is used.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 37

ISP1161x Embedded Programming Guide Rev. 1.0

HCD setting up PTDs . : HCD setting up PTDs

SOF . SOF § SOF . SOF

ATLInt

[
I
H/W scanning ATL : I
buffer :

: ISR running
(HCP accessing ATL)

ATLInt
H/W scanning ATLVE
buffer :
._‘_>
: I
: I
I
I
I

Figure 5-18: ATLInt Interrupt Flow

In the timing diagram in Figure 5-18, it is assumed that the hardware scans the ATL buffer until the FSMPS duration
expires. This means that the ATL buffer still has uncompleted PTDs when the FSMPS duration expires. The ATLInt
interrupt may occur sooner that the FSMPS duration time if PTDs in the ATL buffer get completed before the duration
time expires. When there are no more PTDs in the ATL buffer, the ATLInt interrupt does not occur.

As can be seen from the timing diagram in Figure 5-18, there will be some time for ISR to run before the next frame
starts. If ISR is done and the ATL buffer is updated with new PTDs before the next frame begins, USB transactions can
occur in every frame. However, if the execution of ISR and setting up of new PTDs in the ATL buffer cross into the
next frame, hardware waits until a new full frame begins. The timing diagram in Figure 5-19 illustrates the case in which
USB transactions occur in every frame.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 38

ISP1161x Embedded Programming Guide Rev. 1.0
I Lad
SOF AT“um o
I |-
{ H/W scanning ATL
| buffer
l >
: ISR runs
: and ATL buffer
I updated
i
|
|
|
I
|
|
I

[

H/W scanning ATL'

|
(0]

:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
: buffer again
:

|

|

Figure 5-19: Running the Host Controller with the ATLInt Interrupt

An undesirable side effect of using the ATLInt interrupt to access the ATL buffer is that the ATLInt interrupt may
interrupt the microprocessor too many times in short intervals, if the ATL buffer consistently contains PTDs that cause
short USB transactions only.

Whereas using the SOFITLInt interrupt allows USB transactions to occur in every frame, using the SOFITLInt interrupt
implies that USB transaction occur in every other frame, in which one frame is consumed by ISR. This is illustrated in
the timing diagram in Figure 5-20.

SOF SOF SOF
} .
ATLInt
A
-
buffer
>
ISR runs and

ATL buffer updated

>

H/W scanning ATL

|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
[
:
I buffer again
|

|
|
|
|
H/W scanning ATL I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 5-20: Running the Host Controller with the SOFITLInt Interrupt

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 39

ISP1161x Embedded Programming Guide Rev. 1.0

5.6.2. Starting Scan of the ATL Buffer by Hardware

The Host Controller hardware starts scanning the ATL buffer when the HCD writes data to the ATL buffer via the
HcATLBufferPort register for the number of bytes specified in the HcTransferCounter register. When the write is
completed, the ATLBufferFull bit in the HcBufferStatus register is set to logic 1. The transition of the ATLBufferFull bit
from logic 0 to logic 1 causes the hardware to start scanning the ATL buffer to process PTDs in the ATL buffer. When
the ATLInt interrupt occurs, meaning that the hardware stops scanning the ATL buffer, the ATLBufferDone bit in the
HcBufferStatus register is set to logic 1, which is an indication to the HCD that it can now access the ATL buffer.

The following pseudocode illustrates write to the ATL buffer.

void witeToATLBuffer (char * pbuffer, ULONG uTotal Bytes)

{

ULONG uTot al Doubl eWor d;
ULONG * puBuffer;

ULONG ubDat al, uData2, ul ndex;

/!l Wite the length of wite to the HcTransferCounter register in nunmber of bytes.
WRI TE_32BI T_REQ HcTr ansfer Counter, uTot al Byt es)

Il Access data four bytes at a tine and typecast the buffer pointer accordingly.
uTot al Doubl eWord = uTot al Bytes >> 2;
puBuffer = (ULONG *) pbuffer;

/1 Send the wite index of the HcATLBufferPort register to the Host Controller.
out w( COMMAND_PORT, 0xCl)

/1 Delay for 3 systemticks.
i odel ay()
i odel ay()
i odel ay()

/1l Critical section. Disable all interrupts */
DI SABLE_| NTERRUPTS() ;

for (ulndex=0; ulndex < uTotal Doubl eWord; ++ul ndex)
/1 Get |ower and higher half words.

ubDat al puBuf f er[ ul ndex] & OxOO0OOFFFF;
uDat a2 puBuf fer[ul ndex] & OxFFFF0000;

/!l Wite lower-half word foll owed by higher-half word to the ATL buffer
out W DATA_PORT, uDatal);
out w( DATA_PORT, uDat a2);

i odel ay();
}

/1 Qut of the critical section. Allow interrupts to happen again.
ENABLE_| NTERRUPTS() ;

Figure 5-21: Code Example for Writing to the ATL Buffer

The following pseudocode illustrates read from the ATL buffer.

voi d readFromATLBuffer (char * pbuffer, ULONG uTot al Byt es)

{

ULONG uTot al Doubl eWor d;
ULONG * puBuffer;

ULONG ubDat al, uData2, ul ndex;

/! Wite the length of read to the HcTransferCounter regi ster in nunber of bytes.
WRI TE_32BI T_REQ HcTr ansf er Counter, uTot al Byt es)

/1 Access data four bytes at a tine and typecast the buffer pointer accordingly.
uTot al Doubl eWord = uTot al Bytes >> 2;
puBuffer = (ULONG *) pbuffer;

/1 Send the read index of the HcATLBufferPort register to the Host Controller.
out w( COMWAND_PORT, 0x41)

/1 Delay for 3 systemticks.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 40

ISP1161x Embedded Programming Guide Rev. 1.0
i odel ay()
i odel ay()
i odel ay()
/1l Critical section. Disable all interrupts */

DI SABLE_|I NTERRUPTS() ;
for (ulndex=0; ulndex < uTotal Doubl eWord; ++ul ndex)
/1 Read | ower- and higher-half words fromthe ATL buffer.
ubDat al =i nw( DATA_PORT) ;
ubDat a2 =i nw( DATA_PORT) ;

/1l Store data into the doubl eword buffer.
puBuf fer[ul ndex] = (uDatal & OxO0000FFFF) | ((uData2 & OxFFFFO000) << 16);

i odel ay();
}

/1 Qut of critical section. Allow interrupts to happen again.
ENABLE_| NTERRUPTS( ) ;

}

Figure 5-22: Code Example for Reading from the ATL Buffer

5.7. Accessing the ITL Buffer

The ITL buffer can be accessed by the HCD at any time because of the ping pong buffer structure of the ITL buffer.
While the ping buffer is being accessed by the HCD, the Host Controller hardware can access the pong buffer and vice-
versa. The timing diagram in Figure 5-23 illustrates how the ping pong buffer of the ITL buffer is accessed.

SOFITLInt SOFITLInt SOFITLInt SOFITLInt

HCD reads ITL1 HCD reads ITLO HCD reads ITL1
and sets up ITL1 and sets up ITLO and sets up ITL1

‘ . ‘

»

HC accesses
ITLO

HC accesses
ITL1

!
\
\
\
\
\
\
\
\
\
\
1
HC accesses !
ITLO I
\

\

f

\

\

\

\

Figure 5-23: ITL Buffer Access Flow

The following code example shows how to write data from the system memory to the ITL buffer.

void witeTol TLBuffer (char * pbuffer, ULONG uTotal Bytes)

{
ULONG uTot al Doubl eWr d;
ULONG * puBuffer;
ULONG uDat al, uData2, ul ndex;
/!l Wite the length of wite to the HcTransferCounter register in nunmber of bytes.

t h
WRI TE_32BI T_REG HcTr ansf er Count er, uTot al Byt es)

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 41

ISP1161x Embedded Programming Guide Rev. 1.0

Il Access data four bytes at a tine and typecast the buffer pointer accordingly.
uTot al Doubl eWord = uTotal Bytes >> 2;
puBuffer = (ULONG *) pbuffer;

/1 Send the wite index of the Hcl TLBuf ferPort register to the Host Controller.
out w( COMVAND_PORT, 0xC0)

/1l Critical section. Disable all interrupts */
DI SABLE_| NTERRUPTS() ;

for (ulndex=0; ulndex < uTotal Doubl eWord; ++ul ndex)

/1 Get |ower- and higher-half words.
ubDat al = puBuffer[ul ndex] & OxO0000FFFF;

ubDat a2 = puBuffer[ul ndex] & OxFFFFOO0O0O;

/!l Wite lower-half word followed by higher-half word to the I TL buffer.
out W( DATA_PORT, uDatal);

out W DATA_PORT, ubData2);

}

/1 Qut of critical section. Allow interrupts to happen again.
ENABLE_| NTERRUPTS() ;

Figure 5-24: Code Example for Writing to the ITL Buffer

The code example in Figure 5-25 shows how to read data from the ITL buffer to the system memory.

voi d readFrom TLBuffer (char * pbuffer, ULONG uTot al Byt es)

{

ULONG uTot al Doubl eWor d;
ULONG * puBuffer;

ULONG ubDat al, uData2, ul ndex;

/! Wite the length of read to the HcTransferCounter regi ster in nunber of bytes.
WRI TE_32BI T_REG HcTr ansf er Count er, uTot al Byt es)

/1 Access data four bytes at a tine and typecast the buffer pointer accordingly.
uTot al Doubl eWord = uTot al Bytes >> 2;
puBuffer = (ULONG *) pbuffer;

/1 Send the read index of the Hcl TLBufferPort register to the Host Controller.
out w( COMVAND_PORT, 0x40)

/1l Critical section. Disable all interrupts */
DI SABLE_| NTERRUPTS() ;

for (ulndex=0; ulndex < uTotal Doubl eWord; ++ul ndex)

/1 Read | ower- and higher-half words fromthe ITL buffer.
ubDat al =i nw( DATA_PORT) ;
uDat a2 =i nw( DATA_PORT) ;

/1l Store data into the doubl eword buffer.
puBuffer[ul ndex] = (uDatal & Ox0000FFFF) | ((uData2 & OxFFFF0000) << 16);
}

/1 Qut of critical section. Allow interrupts to happen again.
ENABLE_| NTERRUPTS() ;

Figure 5-25: Code Example for Reading from the ITL Buffer

5.8. Flowchart of the Host Controller in the Operational Mode

Once set in the operational mode, the Host Controller goes into a series of steps as shown in the flowchart in . The ITL
buffer is processed first, followed by the interrupt and the ATL buffer.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 42

ISP1161x Embedded Programming Guide Rev. 1.0

» W ait for SOF (=

SOF Reached?

YES
YES
‘ProcesslSOfA ‘ ‘ProcesslSOiB ‘
\ ‘ YES

Schedule
Overrun?

N O

'

‘ Process Interrupt PTD ‘

‘ Process ATL PTDs ‘

EOF Timing
Reached?

Figure 5-26: Host Controller in the Operational State Flow Chart

5.9. Setting Up PTDs for Transfers

PTDs for the control, Bulk and interrupt transfers are placed in the ATL buffer, and PTDs for the isochronous transfer
are placed in the ITL buffer. In the ATL buffer, a combination of the control, Bulk and interrupt transfer PTDs can be
placed in the ATL buffer destined for multiple endpoints in the same or different devices. In the ITL buffer, there can
be multiple PTDs placed in the buffer for different isochronous endpoints in the same or different devices, but there
must be only one PTD placed in the buffer for the same isochronous endpoint. If there happens to be more than one
PTD for the same endpoint, the Host Controller hardware will send the same number of isochronous packets as that of
PTDs to the same endpoint. This is a violation of the USB specification that requires one isochronous packet per frame.
Since there is no hardware checking, the HCD must ensure that there is only one PTD for the same endpoint in the ITL
buffer. The 8-byte PTD header fields are shown in Figure 5-27.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity

ISP1161x Embedded Programming Guide

Bit T

Byia 0
Byt 1
Byte 2
Byle 3
Byle 4
Byta &
Byle & Fonmeat
Byte T

Symbaol
ActualBytes|9: 0]

B 5 4 3 Fo 1 o
ActualByies|T:0]
CompledionCiod s 3:0] Azl Tisgeg b ActualByies|B:E)
MaxPacked Siza[7:0)
Endpointdiim b 3:0] Lest Spaad MaxPackelSiza[9:3)
TatalByles[T:0]
rasErved ChrecticnPID[1:10) TakalByies[9:8)
FunciionAddrass[E]
reseraed
ACCEES Description

R Contains the number of tytes that wea transfermad for this PTD

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb



Connectivity

ISP1161x Embedded Programming Guide

44

Rev. 1.0

Symbaol
CompletionCode[3:0]

Tongle
MaxPacketSize[2:0]

EndpointMumber3:0]
Last{PTD)
(Low)Spead

TotalBytes([3:0]

MoError

CRC
BitStuffing

DataToggleMismatch
Stall
DeviceMotResponding
PIDCheckFailure
UnexpectedPI D

DataOwearrun

DatalUnderrun

reserved
reserved
BufferOwverrun

BufferlUnderrun

Description
General TD or iscchronous data packet processing
completed with no detected errors.
Last data packet from endpoint contained a CRC error.

Last data packet from endpoint contained a bit stuffing
violation.

Last packet from endpoint had data toggle PID that did
not match the expected valug.

TD was moved to the Done queue because the
endpoint returned a STALL PID.

Device did not respond to token (IM) or did not provide a
handshake (OLUT).

Check bits on PID from endpeoint failed on data PID (IM)
or handshake (OUT)

Received PID was not valid when encountered or PID
value is not defined.

The amount of data refurned by the endpoint exceedad
either the size of the maximum data packet allowed
from the endpoint (found in MaximumPacketSize field of
ED) or the remaining buffer size.

The endpoint returned is less than MaximumPacketSize
and that amount was not sufficient to fill the specified
buffer.

Dwring an IM, the HC received data from an endpoint
faster than it could be written to system memony.

During an OUT, the HC could not refrieve data from the
system mamory fast enough to keep up with the USE
data rate.

Set to logic 1 by firmware to enable the execution of transactions by the HC. When the

fransaction associated with this descriptor is complated, the HC sets this bit to logic 0,
indicating that a fransaction for this element should not be executed when it is next
encounterad in the schedule.

Used to generate or compare the data PID value (0ATAD or DATAT). It is updated after

each successful transmission or reception of a data packet.

The maximum number of bytes that can be sent to or received from the endpoint in a
single data packet.

USE address of the endpoint within the function.
Last PTD of a list (ITL or ATL). A logic 1 indicates that the PTD is the last FTD.
Speed of the endpoint:

S =0 — full spead
S=1—low spead

Access

R 0oon
0o01
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101

R

R

R

R

R

R

R

Specifies the fotal number of bytes fo be transferred with this data structure. For Bulk and
Control only, this can be greater than MaximumPachketSize.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb



Connectivity 45

ISP1161x Embedded Programming Guide Rev. 1.0
Symbal Access Description
DirectionPID[1:0] R a0 SETUP
01 ouTt
10 IN
11 reserved
Format R The format of this data structure. If this is a Conirol, Bulk or Interrupt endpoint, then
Format = 0. If this is an Isochronous endpeoint, then Format = 1.
FunclionfAddress[é0] R The is the USB address of the function containing the endpoint that this PTD refers to.

Figure 5-27: PTD Header Fields

59.1. Control Transfer

Control transfers require extra care by the HCD because a control transfer has two or three transaction stages—Setup,
Data and Status—in which each stage must be completed in order. PTDs for the Setup, Data and Status stages cannot
be placed in the ATL buffer in the same USB frame. This is because the 1ISP1161x Host Controller is a frame-based
Host Controller, which means the Host Controller hardware tries to process as many PTDs as possible in the ATL
buffer during the allotted time in a single frame. The HCD must check for the completion of the PTD for the current
transaction stage before placing a PTD for the next transaction in an ensuing frame. Figure 5-29 illustrates the PTD flow
for a control transfer.

Frame N Frame N + 2 Frame N + 4
P oo » e >

ATL Buffer ATL Buffer ATL Buffer
PTD for Setup Stage PTD for Data Stage PTD for Status Stage
Toggle = DATAO Toggle = DATAL Toggle = DATAL
MaxPacketSize = 64 MaxPacketSize = 64 MaxPacketSize = 64
EndpointNumber = 0 EndpointNumber = 0 EndpointNumber = 0
LastPTD =1 LastPTD =1 LastPTD =1
Speed =0 Speed =0 Speed =0
TotalBytes = 8 TotalBytes = 10 TotalBytes = 0
DirectionPID = SETUP DirectionPID = OUT/IN DirectionPID = IN/OUT
Format=0 Format =10 Format=0
FunctionAddress = 1 FunctionAddress = 1 FunctionAddress = 1

e The HCD is assumed to place only one PTD in the ATL buffer for each transaction stage (LastPTD = 1).
e Device assumption:;
*  64-byte control endpoint
e Full speed
»  Device address is 1
»  Data stage has 10-byte data
Figure 5-28: PTD Flow for the Control Transfer

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb



Connectivity 46

ISP1161x Embedded Programming Guide Rev. 1.0

In the frame N+1, the HCD will process the completed PTD for the Setup stage transaction. The HCD will process the
completed PTD for the Data stage transaction in the frame N+3 (see Figure 5-28). This scenario is valid when the
SOFITLInt interrupt is used as an indication to process the ATL buffer at the 1 ms interval. A control transfer may omit
the Data stage transaction.

592 Bulk, Interrupt and Isochronous Transfers

DirectionPID is either IN or OUT for these transfers. TotalBytes may be larger than the length of an intended endpoint.
In this case, the Host Controller hardware automatically sends an IN or OUT token preceding each max-packet-sized
data packet with the correct data toggle bit for each data packet. The HCD must take care of the setting of the data
toggle bit in the ensuing PTDs. The Host Controller hardware updates the data toggle bit field in the PTD only when
the data packet is delivered successfully. Therefore, when the HCD retires an erroneous data packet, the HCD must take
into account the fact that the data toggle bit field for the erroneous packet was left unchanged.

Figure 5-29 illustrates the setting of the data toggle bit field across multiple PTDs.

ATL Buffer

1st PTD

Toggle = DATAO
MaxPacketSize = 64
EndpointNumber = 1
LastPTD =0

Speed =0
TotalBytes = 130
DirectionPID = OUT
Format =0
FunctionAddress = 1

2nd PTD

Toggle = DATA1
MaxPacketSize = 64
EndpointNumber = 1
LastPTD =1

Speed =0
TotalBytes = 64
DirectionPID = OUT
Format =0
FunctionAddress = 1

Figure 5-29: Data Toggle Bit Setting Example Across Multiple PTDs

The example above assumes the Bulk OUT endpoint size to 64 bytes. The 1st PTD has 130 bytes, and the 2nd PTD has
64 bytes to transfer to the device addressed 1. The 1st PTD will cause the Host Controller hardware to generate a total of
three packets and the hardware will generate one packet from the 24 PTD as shown in Figure 5-30.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 47

ISP1161x Embedded Programming Guide Rev. 1.0

| ouT |Idata packet (DATAO)” ouT || data packet (DATAL) || ouT || data packet (DATAO) || ouT | [ data packet (DATAY) |

< From 1st PTD > < From 2nd PTD >

Figure 5-30: Data Toggle Bit Setting in Multiple PTD Data Packets
As shown in Figure 5-30 , the data toggle bit field must be set to DATAL in the 24 PTD.

5.10. Data Structures for List Processing

Before the HCD copies PTDs from the system memory to the ATL or ITL buffer, the HCD must build and keep track
of PTDs through a collection of data structures. Normally, the responsibility for keeping track of the devices connected
to a Host Controller lies with the bus driver. At any given point in time, the bus driver must have an understanding of
what devices remain connected, what device is being disconnected and what device is being connected. Retaining this
information requires elaborate data structures. Descriptions of these data structures will not be covered in this document
because these are beyond the scope of the goal of this document.

The responsibility of the HCD in comparison to the bus driver is to keep track of all endpoints in all the connected
devices with the attributes of each endpoint, such as the endpoint maximum packet size, the endpoint address and the
device address to which an endpoint belongs. In addition, the HCD must manage the creation of new PTDs for each
endpoint and the processing of the PTDs that have been completed. Employing an efficient architecture of data
structures is the key to the speedy operation of a Host Controller.

One example of such a data structure would be something similar to the data structure used in the implementation of
the OHCI Host Controller [Open Host Controller Interface Specification for USB, Release: 1.0a available at www.usb.org]. The
data structure is composed of three endpoint lists (control endpoint, Bulk endpoint and interrupt endpoint), a PTD list
for each endpoint and a “Done Queue” list. The interrupt endpoint list takes on a different structure as compared to the
control and Bulk endpoint lists, which takes the form of a tree structure.

Each list is pointed by a global pointer variable in the absence of any hardware register that can hold the address of the
first Endpoint (EP) queue head in the list (see Figure 5-31). Each EP queue header points to a PTD list. A PTD list
holds PTDs waiting to be processed by the Host Controller. PTDs are moved in the ATL buffer—in the control, Bulk
and interrupt transfers—by the HCD. Once PTDs are placed in the ATL buffer, the Host Controller hardware
processes the PTDs in the next frame.

HeadPu | »(ED) w(ED) ED) »ED)

PTD PTD PTD PTD

PTD PTD

Figure 5-31: Typical List Structure

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 48

ISP1161x Embedded Programming Guide Rev. 1.0
Interrupt EP Interrupt
Header Ptr — Interrupt
Interrupt
Interrupt
Control EP o

Header Ptr
Bulk EP
Header Ptr

Done Queue L
Header Ptr Eamm—— Done Queue LIy Ty Iy Ny Ky 2Ky 2

Figure 5-32: List Processing Data Structure

For more details on the algorithm for processing interrupt transfers; refer to Open Host Controller Interface Specification for
USB, Release: 1.0a.

5.11. Error Handling

The Host Controller hardware reports any error that occurs during the execution of a PTD via the CompletionCode[3:0]
field in the PTD. There are a total of 11 possible errors that can occur. Of the 11 possible errors, all except one error—
data underrun error—are fatal errors that cause the USB transaction to fail. The following table lists these errors, the
causes for these errors in an OUT transaction and the treatment of these errors by the Host Controller in an IN
transaction.

Table 5-15: USB Transaction Error Codes

Fatal Errors Error Code | IN Token OUT Token

ERROR_CRC 01 No ACK sent Not applicable

ERROR_Bitstuffing 02 No ACK sent Not applicable

ERROR_DatatTogglingMismatch 03 ACK sent Not applicable

ERROR_Stall 04 No ACK sent | The host received Stall from the device.

ERROR_DeviceNotResponding 05 No ACK sent | The host did not receive a handshake reply
within 18-bit time, or a bad SYNC pulse.

ERROR_PIDCheckFailure 06 No ACK sent Not applicable

ERROR_UnExpectedPID 07 No ACK sent | Corrupted ACK, STALL or NAK

ERROR_DataOverRun 08 NAK sent Not applicable

Non-Fatal Error (Warning)

ERROR_DataUnderRun 09 ACK sent Not applicable

ERROR_BufferOverrun 0C — —

ERROR_BufferUnderrun 0D — —

For all errors, the data toggle bit is still toggled and updated by the Host Controller hardware. The HCD must take the
state of the data toggle bit if and when it retries the failed PTD. This is because the data toggle bit is changed in spite of
an error.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 49

ISP1161x Embedded Programming Guide Rev. 1.0

For more details on error handling, refer to the Software section of the ISP1161x Frequently Asked Questions
document.

6. Programming the Device Controller of ISP1161x

The Device Controller (DC) of ISP1161x is a core based on Philips ISP1181 Device Controller, which is a full-speed
USB interface device with up to 14 configurable endpoints. You can access the Device Controller of ISP1161x via the
PI1O mode or DMA transfer with up to 16-bytes per cycle. It has 2462 bytes of dedicated internal FIFO memory. The
type and FIFO size of each endpoint can be individually configured, depending on the required packet size. The
isochronous and Bulk endpoints are double-buffered for increased data throughput.

The Device Controller of 1SP1161x can implement peripheral functions, such as printers, scanners, external mass
storage (Zip® drive) devices and digital still cameras, to transfer data to and from the PC host. The system CPUs in
these peripherals are extremely busy handling many tasks, such as device control, data and image processing. The
firmware of the Device Controller is designed to be fully interrupt-driven. While the system CPU is doing its foreground
task, the USB transfer is handled in the background. This assures best transfer rate and better software structure, and
also simplifies programming and debugging.

The description on programming the Device Controller of ISP1161x is based on the firmware code of the ISP1161x ISA
evaluation kit. The operating system used is DOS. Therefore, the Hardware Abstraction layer focuses on the ISA bus
access.

6.1. Firmware Structure of the Device Controller

The firmware for the evaluation board consists of two major portions: the processing of information and the interrupt
service routine. The Hardware Abstraction layer just moves data from hardware to memory space to be processed by the
Main Loop as shown in Figure 6-1.

Processing of flags, handling of USB
requests and initialization of the
device, as well as transfer of data.
(MAINLOOP.C, CHAP_9.C,
D13BUS.C, HAL4SYS.C)

Hardware
““““““““““““““““ -Abstractionmfayer |- ="~ """TTTTTTTTToTToTo oo o oo
(HAL4D13.C

Interrupt handling and setting of
flags. (ISR.C)

Figure 6-1: Firmware Structure of the 1SP1161x Device Controller

As can be seen in Figure 6-1, the firmware structure can be divided into the following six building blocks:

e Hardware Abstraction Layer—HAL4SYS.C
e Hardware Abstraction Layer—HAL4D13.C
e Interrupt Service Routine—ISR.C

*  Protocol Layer—CHAP_9.C

»  Protocol Layer—D13BUS.C

e Main Loop—MAINLOOP.C.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity

ISP1161x Embedded Programming Guide

6.1.1. Hardware Abstraction Layer—HAL4SYS.C

This is the lowest-layer code in the firmware that performs hardware-dependent 1/0 access of the Device Controller of
ISP1161x, as well as the evaluation board hardware. When porting the firmware to other CPU platforms, this part of the
code always needs modifications or additions.

6.1.2. Hardware Abstraction Layer—HAL4D13.C

To further simplify programming with the Device Controller of ISP1161x, the firmware defines a set of command
interfaces that encapsulate all the functions used to access the Device Controller of ISP1161x. When porting the
firmware to other operation systems, this portion of the code must be modified.

6.1.3. Interrupt Service Routine—ISR.C

This part of the code handles interrupt generated by the Device Controller of ISP1161x. It retrieves data from the
ISP1161x Device Controller's internal FIFO to CPU memory and sets up proper event flags to inform the Main Loop

program to process.

6.1.4. Protocol Layer—CHAP_9.C

This Protocol layer handles standard USB device request, which is defined in the Chapter 9 of USB Specification Rev.
2.0. The firmware implementation of the USB device request is described in more detail in Section 6.7.

6.1.5. Protocol Layer—D13BUS.C
This Protocol layer handles specific vendor requests. Examples are the Bulk transfer and the isochronous (ISO) transfer.

6.1.6. Main Loop—MAINLOOP.C

The Main Loop checks event flags and passes to appropriate the subroutine for further processing. It also contains the
code for human interface, such as the keyboard scan.

6.2. Porting the Firmware to Other CPU Platform

Table 6-1 shows the modifications that must be done to building blocks. There are two levels of porting. The first level
is the Standard Device Request, that is, USB Chapter 9 only, which is to allow the firmware to pass enumeration by
supporting standard USB requests. The second level is the full product development. This involves product-specific
firmware code, that is, Vendor Request.

Table 6-1: Building Blocks Modifications

50

Rev. 1.0

File Name Chapter 9 Only Product Level

HAL4SYS.C Port to hardware specific Port to hardware specific

HAL4D13.C Port to hardware specific No change

ISR.C No change Add product specific processing to the

Generic and Main endpoints

CHAP 9.C No change Product specific USB descriptors

D13BUS.C No change Add vendor request supports, if necessary

MAINLOOP.C | Depending on the CPU and the system, ports, timer | Add product specific Main Loop processing
and interrupt initialization must be rewritten

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 51

ISP1161x Embedded Programming Guide Rev. 1.0

6.3. Developing the Firmware in the Polling Mode
To develop the firmware in the polling mode, add the following lines of code to the Main Loop:

if(interrupt_pin_|ow)
fn_usb_isr();

Normally, Interrupt Service Routine (ISR) is initiated by the hardware. In the polling mode, the Main Loop detects the
status of the interrupt pin, and invokes ISR, if necessary.

6.4. Hardware Abstraction Layer

6.4.1. Hardware Abstraction Layer for the System

This layer contains the lowest-layer functions that must be changed on different CPU platforms. The function
prototypes in the Hardware Abstraction layer for the system are as follows:

Hal 4Sys_Acqui r eTi ner O( voi d) ;
Hal 4Sys_Rel easeTi ner0(voi d) ;
interrupt Hal 4Sys_| sr4Ti mer(void);

voi d Hal 4Sys_Acqui r eKeypad(voi d);
voi d Hal 4Sys_Rel easeKeypad(voi d);

voi d Hal 4Sys_Waiti nUS(I N OQUT ULONG tine);
voi d Hal 4Sys_WaitinMS( | N OUT ULONG tine);

voi d Hal 4Sys_Control LEDPattern( UCHAR LEDpattern);
voi d Hal 4Sys_Control D13l nterrupt ( BOOLEAN I nterrupt EN);

For example, the subroutine to acquire the system timer is as follows:

voi d Hal 4Sys_Acqui r eTi ner O( voi d)

i f(bD13fl ags. bits. verbose)
printf("enter Hal 4Sys_AcquireTi nerO\n");

Hal 4Sys_Q dl sr4Ti mer = getvect (0x8);
setvect (0x8, Hal 4Sys_I sr4Tiner);

i f(bD13fl ags. bits. verbose)
printf("exit Hal 4Sys_AcquireTi ner0\n");

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity

ISP1161x Embedded Programming Guide

6.4.2.

Hardware Abstraction Layer for the Device Controller of ISP1161x

Rev. 1.0

The following functions are defined as the Device Controller command interface of ISP1161x to simplify the device
programming. These are implementations of the ISP1161x Device Controller command set, which is defined in the
ISP1161x datasheet.

Hal 4D13_Set Endpoi nt Confi g( UCHAR bEPConfi g, UCHAR bEPI ndex) ;

Hal 4D13_Get Endpoi nt Conf i g( UCHAR bEPI ndex) ;

Hal 4D13_Set Addr essEnabl e( UCHAR bAddr ess, UCHAR bEnabl e);
Hal 4D13_Get Addr ess(voi d) ;

Hal 4D13_Set Mbde( UCHAR bMbde) ;
Hal 4D13_Get Mode(voi d) ;

Hal 4D13_Set DevConf i g( USHORT wbevCnf g) ;
Hal 4D13_Get DevConfi g(voi d);

Hal 4D13_Set | nt Enabl e( ULONG dI nt En) ;
Hal 4D13_Get | nt Enabl e(voi d) ;

Hal 4D13_Set DMAConf i g( USHORT wDMAConfi g) ;
Hal 4D13_Get DMAConfi g(voi d);

Hal 4D13_Set DVACount er ( USHORT wDMACount er);
Hal 4D13_Get DMACount er (voi d) ;

Hal 4D13_Reset Devi ce(voi d);

Hal4D13_WriteEndpoint(UCHAR bEPIndex, UCHAR * buf, USHORT len);
Hal4D13_ReadEndpoint(UCHAR bEPIndex, UCHAR * buf, USHORT len);

Hal 4D13_Set Endpoi nt St at us( UCHAR bEPI ndex, UCHAR bStall ed);

Hal 4D13_Get Endpoi nt St at usW nt er upt  ear ( UCHAR bEPI ndex) ;
Hal 4D13_Val i dBuf f er (UCHAR bEPI ndex) ;

Hal 4D13_Cl ear Buf f er (UCHAR bEPI ndex) ;

Hal 4D13_Acknow edgeSETUP(void );

Hal 4D13_Get Er r or Code( UCHAR bEPI ndex) ;
Hal 4D13_LockDevi ce( UCHAR bTrue) ;

Hal 4D13_ReadChi pl D( voi d) ;
Hal 4D13_ReadCur r ent Fr ameNunber (voi d) ;

Hal 4D13_Readl nt er r upt Regi st er (voi d);

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity
ISP1161x Embedded Programming Guide Rev. 1.0

6.5. Interrupt Service Routine
The Device Controller of the ISP1161x firmware is fully interrupt-driven. The flowchart of Interrupt Service Routine
(ISR) is given in Figure 6-2.

ISR Entry

Read ISP1161 Device Controller Interrupt
Register Reset Idle Timer (see Figure 6-4)

Set Bus Reset Flag «Yes

No

Suspend
Change?
N

O¢
<

Yes—» Set Suspend Changed Flag

Yes—» DMA EOT Handler Subroutine 1

!

N
) 4

G*
‘—Yes» SOF Handler Subroutine

e R A

No
Control IN Done?
No*
ontrol OU
Done?
No «
Yes% EpO1Done Handler Subroutine H
Done
o+

N

ndpoint O
Done
No <
v
ndpoint O
Done
No «
v

Yes—» EpO00TxDone Handler Subroutine ——

Yes—» EpOORxDone Handler Subroutine ——

Yes» Ep02Done Handler Subroutine ——

Yes—» EpO3Done Handler Subroutine ——

EpOEDone Handler Subroutine

Send EOI to Interrupt Controller
|

End of ISR

Figure 6-2: Flowchart of ISR

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 54

ISP1161x Embedded Programming Guide Rev. 1.0

Table 6-2: Interrupt Register: Bit Allocation

Bit 3 30 29 28 27 26 25 24
Symboaol reserved

Reset 0 0 0 0 o o 0 0
Access R R R R R R R R
Bit 23 22 21 20 19 18 17 16
Symbol EP14 EP13 EP12 EP11 EP10 EFPg EF8 EFY
Reset 0 o o o o o 0 0
Access R R R R R R R R
Bit 15 14 13 12 11 10 9 B
Symbol EP& EF5 EP4 EP3 EF2 EP1 EPOIN EPOOUT
Reset 0 o o o o o 0 0
Access R R R R R R R R
Bit 7 6 5 4 3 2 1 0
Symbol BUSTATUS SP_EOT PSOF SOF EOT SUSPHND RESUME RESET
Reset o] 0 0 0 o o 0 0
Access R R R R R R R R

Note: A logic 1 indicates that an interrupt occurred on the respective bit.

Figure 6-3 contains the pseudocode of a typical Interrupt Service Routine.

voi d fn_usb_isr(void)
ULONG  i_st;

= Readl nterrupt Register(); /* See Figure 6-4 on reading the Interrupt register */
_st 1=0) {

i f(i_st & D13REG | NTSRC_BUSRESET)
I sr_BusReset ();

el se if(i_st & DL3REG | NTSRC_SUSPEND)
| sr_SuspendChange(); /* This function sets suspend changed flag */

el se if(i_st & DL3REG | NTSRC _EQT)
| sr_DmaEot (); /* DVMA EOT handl er subroutine */

el se if(i_st & (D13REG | NTSRC_SOF| D13REG | NTSRC_PSEUDO_SCOF))
Isr_SOF(); [/* SOF handl er subroutine */

el se
{
i f(i_st & D13REG. | NTSRC_EPOI N)
| sr_EpO0TxDone(); /* EpO0TxDone handl er subroutine */
/* (control IN EP) */
i f(i_st & D13REG_| NTSRC_EPOOUT)
| sr_EpOORxDone(); /* EpOORxDone handl er subroutine */
/* (control QUT EP) */
i f(i_st & D13REG_ | NTSRC_EP01)
I sr_EpOlDone(); /* EpOlDone handl er subroutine */
if(i_st & D13REG | NTSRC_EP02)
| sr_Ep02Done(); /* EpO2Done handl er subroutine */
if(i_st & D13REG | NTSRC_EP03)
I sr_EpO3Done(); /* EpO3Done handl er subroutine */
/* Add interrupts as and when needed */
i f(i_st & D13REG | NTSRC_EPOE)
| sr_EpOEDone() ; /* EpOEDone handl er subroutine */
}
}

Figure 6-3: Code Example of a Typical ISR

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb



Connectivity 55

ISP1161x Embedded Programming Guide Rev. 1.0

A pseudocode to read the Interrupt register is given in Figure 6-4.

ULONG Readl nt er r upt Regi st er (voi d)
UONG i = 0;

out port (D13_COWAND PORT, Read_| nt_Register); /* Read the Read_l| nt _Register = OxC0 */

i = inport(D13_DATA PORT); /* Read the |ower word */

i += (((ULONG i nport (D13_DATA PORT)) << 16); /* ORthe lower word with the upper */
/* word to forma ULONG variable */

return i; /* Return the Interrupt register */

Figure 6-4: Code Example to Read the Interrupt Register

At the entrance of ISR, the firmware uses the Read Interrupt register to decide the source of the interrupt and then to
dispatch it to the appropriate subroutines for processing. ISR communicates with the foreground Main Loop through
event flags "D13FLAGS" and data buffers "CONTROL_XFER".

typedef uni on _D13FLAGS
{
struct _DI13FSM FLAGS

IRQL_1 UCHAR bus_reset ©1;
I RQL_1 UCHAR suspend o1
I RQL_1 UCHAR DCP_state L4,
IRQL_1 UCHAR set up_dnma ©1;
I RQL_1 UCHAR timer L
} bits;
ULONG val ue;
} DI13FLAGS;
typedef struct _CONTROL_XFER
I RQL_1 DEVI CE_REQUEST Devi ceRequest ;
I RQL_1 USHORT wLengt h;
I RQL_1 USHORT wCount ;
| RQL_1 ADDRESS Addr ;
I RQL_1 UCHAR dat aBuf f er [ MAX_CONTROLDATA_SI ZE] ;

} CONTROL_XFER, * PCONTROL_XFER;

Wher e,
typedef struct _device_request

UCHAR bnRequest Type;
UCHAR bRequest ;
USHORT wval ue;
USHORT wi ndex;
USHORT wiengt h;

} DEVI CE_REQUEST,;

Figure 6-5: Control Flags

The task splitting between ISR and the Main Loop is that ISR collects data from the internal buffer of the ISP1161x
Device Controller and moves the data packet to a data buffer. When ISR has collected enough data, it informs the Main
Loop that data is ready for processing. The Main Loop processes the data from the data buffer.

The following sections explain the various event handlers.

6.5.1. Bus Reset
The bus reset does not require any special processing within ISR. ISR sets the “bus_reset” flag in D13FLAGS and then
exits.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 56

ISP1161x Embedded Programming Guide Rev. 1.0

6.5.2. Suspend Change
Suspend does not require special processing within ISR. ISR sets the suspend flag in D13FLAGS and then exits.

6.5.3. EOT Handler
For information on EOT handler, contact the Philips Semiconductors’ support team at wired.support@philips.com

6.5.4. Control Endpoint Handler

No-data Control
return Status

Status Status

Status

Status

Status

~

DATAOUT

\

Control Write

Status Control Read

Figure 6-6: State Machine of the Control Transfer

The control transfer always begins with the Setup stage and is followed by an optional Data stage. The Data stage can be
one or more IN or OUT transactions. Finally, it ends with the Status stage, that is, HANDSHAKE. Figure 6-6 shows
the various states of transitions on control endpoints. The firmware uses these five states to handle the control transfer

correctly.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 57

ISP1161x Embedded Programming Guide Rev. 1.0

6.5.5. Control OUT Handler
Handler

Clear Control OUT
Interrupt

N Control OUT Status Wrong
E——
° Return

Data OUT Packet

ontrol State =
DATAOUT?

No

No

Yes
Yes v

¢ . Control State <-
Control State <- Read Control OUT Endpoint Buffer STALL

SETUPPROC Clear the Buffer

All Data Received? No—l
Yes

v Control State <-
Control State <- DATAOUT
REQUESTPROC

v
End of Control OUT
Handler

Figure 6-7: Flowchart of the Control OUT Handler

The microprocessor must clear the control OUT interrupt bit on the Device Controller of ISP1161x and verify whether
this endpoint is full. Figure 6-8 contains a pseudocode to check whether the OUT endpoint is full. This is done by
issuing a Read Endpoint Status command (code 0x50) that clears the control OUT interrupt bit of the Interrupt register,
and at the same time returns status information. Figure 6-9 shows a pseudocode to read the Endpoint Status register (see
Table 6-3 and Table 6-4). This clears the corresponding endpoint interrupt. If the status information reports a Setup
packet (SETUPT bit (bit 2) of the Endpoint Status register), the “SETUPPROC” state will be set for the Main Loop to
process. Otherwise, the microprocessor extracts the content of the data OUT packet buffer by reading the control
endpoint. Figure 6-10 contains a pseudocode to read the contents of an OUT buffer. After making sure all the data is
received, the handler sets the Device Controller of ISP1161x to the “REQUESTPROC” state.

EP_St at us = Read_Endpoi nt _St at us(0x00) /* Endpoint status of EPO */
i f(EP_Status & 0x20) /* Check whether the prinmary buffer is full or not */
{

}

/* Proceed with the programflow */

Figure 6-8: Code Example to Check Status of the OUT Endpoint

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 58

ISP1161x Embedded Programming Guide Rev. 1.0

UCHAR Read_Endpoi nt _St at us( UCHAR EPI ndex)
{

UCHAR c;

out port (D13_COWAND_PORT, READ EP_ST + EPI ndex); /* READ EP_ST = 0x50 */
¢ = (UCHAR) (i nport (D13_DATA PORT) & OxO0ff);

return c;

Figure 6-9: Code Example for Reading the Endpoint Status Register

A typical pseudocode to read the contents of an OUT buffer is given in Figure 6-10.

USHORT Read_Endpoi nt (UCHAR EPI ndex , USHORT* PTR , USHORT LENGTH)
{

USHORT j,i;
/* Sel ect endpoint */
out port ( D13_COMVAND_PORT , READ_EP+EPI ndex) ; /* READ_EP = 0x10 */
j = inport (D13_DATA PORT); /* Read the length in bytes inside the OUT buffer */
if( j > LENGTH)
j = LENGTH;
for(i=0; i<j ; i++

/* Read buffer */
*(PTR+i ) = inport(D13_DATA PORT);

}
/* Clear buffer */
out port ( D13_COMVAND_PORT , CLEAR BUFF+ EPI ndex); /* CLEAR _BUFF = 0x70 */

return j;
}
Figure 6-10; Code Example for Reading the Contents of an OUT Buffer
Table 6-3: Endpoint Status Register: Bit Allocation
Bit T 6 5 4 3 2 1 0
Symbaol EPSTAL EPFULL1 EPFULLO | DATA_PID OVER SETUPT CPUBUF reserved
WRITE
Reset | 0 0 0 0 0 0 0 0
Access | R R R R R R R R

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 59

ISP1161x Embedded Programming Guide Rev. 1.0

Table 6-4: Endpoint Status Register: Bit Description

Bit Symbol Description
Fi EFSTAL This bit indicates whether the endpoint is stalled or not
i1 = stalled, 0 = not stalled).

Set o logic 1 by a Stall Endpoint command, cleared to logic O by
an Unstall Endpoint command. The endpoint is automatically
unstalled upon reception of a SETUR token.

5] EPFULLA A logic 1 indicates that the secondary endpoint buffer is full.

5 EPFULLO Alogic 1 indicates that the primary endpaint buffer is full.

4 DATA_FID This bit indicates the data PID of the next packet (0 = DATA PID,
1= DATAT PID).

3 OVERWRITE  This bit is set by hardware, a logic 1 indicating that a new Setup

packst has overwritten the previous setup information, before it
was acknowledged or befors the endpoint was stalled. This bit is
cleared by reading, if writing the setup data has finished.

Firmware must check this bit before sending an Acknowledge
Setup command or stalling the endpoint. Upon reading a logic 1
the firmware must stop ongoing setup actions and wait for a new
Setup packet.

2 SETUPT A logic 1 indicates that the buffer contains a Setup packet.

1 CPRUBUF This bit indicates which buffer is currently selected for CPU
access (0 = primary buffer, 1 = secondary buffer).

0 - reserved

6.5.6. Control IN Handler

After the Setup stage is complete, the host executes the Data phase. If the Device Controller of ISP1161x receives a
control IN packet, it will go to the “control IN handler”. The microprocessor must first clear the control IN interrupt
bit of the ISP1161x Device Controller by reading its Read Endpoint Status code (Code 0x51). Figure 6-11 shows a
pseudocode to read the Endpoint Status register. This clears the corresponding endpoint interrupt. Using the Endpoint
status, it can determine whether the IN buffer is empty or full. Figure 6-12 contains a pseudocode to check whether the
IN endpoint is empty or not. After verifying that the Device Controller of ISP1161x is in the appropriate state, the
microprocessor proceeds to send the data packet, see Figure 6-13.

Figure 6-14 shows the flowchart of the control IN handler. Since the Device Controller of the ISP1161x control
endpoint has only 64 bytes FIFO, the microprocessor must control the amount of data during the transmission phase, if
the requested length is more than 64 bytes. As indicated in the flowchart, the microprocessor must check its current and
remaining data size to be sent to the host. If the remaining data size is greater than 64 bytes, the microprocessor will
send the first 64 bytes and then subtract the reference length (requested length) by 64. When the next control IN token
comes, the microprocessor determines whether the remaining byte is zero. If there is no more data to be sent, the
microprocessor must send an empty packet to inform the host that there is no more data to be sent.

UCHAR Read_Endpoi nt _St at us( UCHAR EPI ndex)
{

UCHAR c;

out port ( D13_COVWAND_PCRT, READ EP_ST + EPI ndex); /* READ_EP_ST = 0x50 */
¢ = (UCHAR) (i nport (D13_DATA PORT) & 0xO0ff);

return c;

Figure 6-11: Code Example for Reading the Endpoint Status Register

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 60

ISP1161x Embedded Programming Guide Rev. 1.0

EP_St at us = Read_Endpoi nt _St at us(0x01) /* Endpoint status of EP1 */
if(!(EP_Status & 0x20)) /* Check whether the primary buffer is enpty or not */

/* Proceed with the programflow */

{
}

Figure 6-12: Code Example to Check the Status of the IN Endpoint

USHORT Wi te_Endpoint (UCHAR EPI ndex , USHORT* PTR , USHORT LENGTH)

{
USHORT i ;

/* Select the endpoint */
out port (D13_COVWMAND_PORT , WRI TE_EP+EPIndex); /* WRI TE_EP = 0x00 ; EPIndex = 0x01 */
outport (D13_DATA PORT , LENGIH); /* Wite the length of the data into the IN buffer */

/* Wite the buffer */
for(i=0; i<LENGTH ; i++)
out port ( D13_DATA PORT , *(PTR+i) );

/* Validate buffer */

out port ( D13_COMVAND_PORT, EP_VALI D_BUF+bEPI ndex) ; EPl ndex = 0x01 */

/* EP_VALI D_BUF =0x60 ;

return j;

Figure 6-13: Code Example for Writing the Contents to an IN Buffer

Control IN Handler

Clear Control IN Interrupt
Bit

Buffer Empty?

No—»| Control Status Wrong Return

Control State =

DATAIN? NO$< Control State <- STALL

Yes

Last Packet? Yes Last Packet=0? Yes
No No

Write Control IN Endpoint Buffer
Validate the Buffer
Control State <- DATAIN

Write Control IN Buffer with
Remaining Data Size
Control State <- HANDSHAKE

I

|

Write Control IN Buffer with
Empty Packet
Control State <-
HANDSHAKE

End of Control IN Handler

Figure 6-14: Flowchart of the Control IN Handler

Note: OUT and IN data transactions differ slightly in implementation. The control OUT handler and the control IN
handler are called during a control OUT interrupt event and a control IN interrupt event, respectively. When the control
OUT interrupt event occurs, it signifies that the host has already sent data to the control OUT endpoint. This OUT
interrupt is the trigger to start reading from the buffer. However, for the control IN, the payload is first written in the IN
endpoint, and then validated.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 61

ISP1161x Embedded Programming Guide Rev. 1.0

6.5.7. Bulk Endpoint Handler

The Device Controller of 1ISP1161x has 16 endpoints: control IN and OUT plus 14 configurable endpoints. The 14
endpoints can be individually defined as interrupt, Bulk or isochronous, IN or OUT. The size of the FIFO determines
the maximum packet size that the hardware can support for a given endpoint. Table 6-5 shows the recommended
register programming of the Endpoint Configuration register for a Bulk endpoint. The bit allocation and bit description
of the Endpoint Configuration register are given in Table 6-6 and Table 6-7, respectively.

Table 6-5: Recommended Endpoint Configuration Register Programming for a Bulk Endpoint

Bit Bit Setting Description
7 1 Endpoint enable bit
6 0 for OUT Endpoint direction
1for IN
5 1 Enable double buffering
4 0 Bulk endpoint
3t00 0011 Size bits of an enabled endpoint: 64 bytes

Table 6-6: Endpoint Configuration Register: Bit Allocation

Bit 7 6 5 4 3 2 1 0
Symbol | FIFOEN EPDIR DBLBUF | FFOISO FFOSZ[3:0]

Reset | 0 0 0 0 0 0 0 0
Access | R RAW RAN W RAW R R RAW

Table 6-7: Endpoint Configuration Register: Bit Description

Bit Symbaol Description

¥ FIFDEM A logic 1indicates an enabled FIFD with allocated memory.
A logic 0 indicates a disabled FIFO {no bytes allocated).

& EFDIR This bit defines the endpoint direction (0= OUT, 1 = IN); it also
determings the DMA transfer direction (0 = read, 1 = wrile).

5 DBLBUF A logic 1 indicates that this endpoint has double buffering.

4 FFOISO A lagic 1 indicates an isochronous endpoint. A logic 0 indicates
a bulk or interrupt endpoint.

o0 FFOSZ[3:0] Selects the FIFO size according to programmable FIFO size

An example on how to configure a Bulk OUT or Bulk IN endpoint is given in Figure 6-15.

#def i ne EPCNFG_FI FO_EN 0x80
#def i ne EPCNFG_DBLBUF_EN 0x20
#def i ne EPCNFG_NONI SOSZ_64 0x03
#define EPCNFG_I N_EN 0x40

/* Configuration of Bulk OUT */
Set Endpoi nt Conf i g( EPCNFG_FI FO_EN
| EPCNFG_DBLBUF_EN\
| EPCNFG_NONI SCSZ_64\
Bul k_EPI ndex\ /* Ranges from O0x00 — OxOF, dependi ng on which endpoi nt you */
/* configure as Bul k QUT. */
)

/* Configuration of Bulk IN */

Set Endpoi nt Conf i g( EPCNFG_FI FO_EN
| EPCNFG_DBLBUF_EN\
| EPCNFG_NONI SOSZ_64\
| EPCNFG_| N_EN\

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb



Connectivity 62

ISP1161x Embedded Programming Guide Rev. 1.0

Bul k_EPI ndex\ /* Ranges from 0x00 — OxOF, dependi ng on whi ch endpoint you */
/* configure as Bulk IN. */

)
Figure 6-15: Code Example for Configuring a Bulk OUT or Bulk IN Endpoint

The function definition of void SetEndpointConfig(UCHAR bEPConfig, UCHAR bEPIndex) is given in Figure 6-16.
\{/oi d Set Endpoi nt Confi g( UCHAR bEPConfi g, UCHAR bEPI ndex)

out port (D13_COMVAND_PORT, (USHORT) (WR_EP_CONFI G+bEPI ndex)); /* WR_EP_CONFI G = 0x20 */
out port ( D13_DATA PORT, ( USHORT) bEPConfi g) ;

Figure 6-16: Function Definition of void SetEndpointConfig(UCHAR bEPConfig, UCHAR bEPIndex)

When the host is ready to transmit the Bulk data, it issues an OUT token packet followed by a data packet. The Device
Controller of I1SP1161x generates an interrupt to inform the microprocessor. The microprocessor must clear the
interrupt bit of the ISP1161x Device Controller and verify the data length. The flowchart of the Bulk OUT handler is
given in Figure 6-17.

Bulk OUT
Handler

Clear Bulk OUT Interrupt
(see Figure 6-18)

Buffer Full Bulk OUT Status Wrong

No» Return

Yes

v

Read Bulk OUT Endpoint Buffer
(see Figure 6-20)

All Data Received?

Yes

Y

Gnd of Bulk OUT Handl@

Figure 6-17: Flowchart of the Bulk OUT Handler

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 63

ISP1161x Embedded Programming Guide Rev. 1.0

Figure 6-18 shows the code example for reading the Endpoint Status register. This clears the corresponding endpoint
interrupt.

UCHAR Read_Endpoi nt _St at us( UCHAR EPI ndex)
{

UCHAR c;

out port (D13_COWAND _PORT, READ EP_ST + EPI ndex); /* READ_EP_ST = 0x50 */
¢ = (UCHAR) (i nport (D13_DATA PORT) & 0xOff);

return c;

Figure 6-18: Code Example for Reading the Endpoint Status Register

/* Bul k_EPI ndex ranges from Ox50 — Ox5F, dependi ng on which endpoint you configure as Bulk */
EP_St at us = Read_Endpoi nt _St at us( BULK_EPI ndex)
if(EP_Status & 0x20) /* Check whether the prinmary buffer is full */

{
/* Proceed with the programflow */
}

Figure 6-19: Code Example to Check the Status of the Bulk OUT Endpoint

USHORT Read_Endpoi nt (UCHAR EPI ndex , USHORT* PTR , USHORT LENGTH)
{

USHORT j,i;

/* Sel ect endpoint */

out port (D13_COWAND PORT , READ EP+EPI ndex); /* READ_EP = 0x10 */

j = inport(DL13_DATA PORT); // Read the length in bytes inside the OUT buffer
if( j > LENGTH)

j = LENGTH;
/*Read the buffer */
for(i=0; i< ; i++)

*(PTR+) = inport (DL3_DATA_PORT);

/* Cear the buffer */
out port (D13_COMVAND_PORT , CLEAR BUFF+ EPI ndex); /* CLEAR BUFF = 0x70 */
return j;

Figure 6-20: Code Example for Reading the Contents of a Bulk OUT Buffer

When the host is ready to receive the Bulk data, it issues an IN token. The Device Controller of ISP1161x generates an
interrupt to inform the microprocessor. The microprocessor must clear the interrupt bit of the ISP1161x Device
Controller and return the data packet to be sent. The flowchart of the Bulk IN handler is given in Figure 6-21.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 64

ISP1161x Embedded Programming Guide Rev. 1.0

Clear Bulk IN Interrupt
(see Figure 6-22)

Buffer Empty?
(see Figure 6-23)

Bulk IN Status Wrong

No— Return

Yes
v

Write Bulk IN Endpoint Buffer
(see Figure 6-24)

Last Packet?

Yes

v

CEnd of Bulk IN HandleD

Figure 6-21; Flowchart of the Bulk IN Handler

A pseudocode for reading the Endpoint Status register is given in Figure 6-22. This clears the corresponding endpoint
interrupts.

UCHAR Read_Endpoi nt _St at us( UCHAR EPI ndex)
{

UCHAR c;
out port (D13_COWAND_PORT, READ EP_ST + EPI ndex); /* READ EP_ST = 0x50 */
¢ = (UCHAR) (i nport (D13_DATA PORT) & 0xOff);

return c;

}
Figure 6-22: Code Example for Reading the Endpoint Status Register

/* Bul k_EPI ndex ranges from 0x50 — Ox5F, dependi ng on whi ch endpoint you configure as Bul k. */
EP_St at us = Read_Endpoi nt _St at us( BULK_EPI ndex)
If( '(EP_Status & 0x20)) /* Check whether the primary buffer is full or not */
{

/*Proceed with the programflow */
}

Figure 6-23: Code Example to Check the Status of the Bulk IN Endpoint

USHORT Wite_Endpoint (UCHAR EPI ndex , USHORT* PTR , USHORT LENGTH)
{

USHORT i ;
/* Select the endpoint */

out port (D13_COVMAND_PORT , WRI TE_EP+EPIndex); /* WRI TE_EP = 0x00 */
out port (D13_DATA PORT , LENGTH); /* Wite the length of data into the IN buffer */

/* Wite the buffer */
for(i=0; i<LENGTH ; i++)
out port ( D13_DATA PORT , *(PTR+l) );

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 65

ISP1161x Embedded Programming Guide Rev. 1.0

/* Validate the buffer */
?out port (D13_COWAND _PORT, EP_VALI D BUF+bEPI ndex); /* EP_VALID BUF =0x60; */

return j;

Figure 6-24: Code Example for Writing the Contents into a Bulk IN Buffer

6.5.8. ISO Endpoint Handler

Table 6-8 contains the recommended register programming in the Endpoint Configuration register for an 1ISO endpoint.

Table 6-8: Recommended Endpoint Configuration Register Programming for an 1ISO Endpoint

Bit Bit Setting Description
7 1 Endpoint enable bit
6 0 for OUT Endpoint direction
1for IN
5 1 Enable double buffering
4 1 ISO endpoint
3t00 1011 Size bits of an enabled endpoint: 512 bytes

Figure 6-25 contains an example on how to configure an 1ISO OUT or ISO IN endpoint.

#defi ne EPCNFG_FI FO_EN 0x80
#def i ne EPCNFG_DBLBUF_EN 0x20
#def i ne EPCNFG_| SOSZ_512 0x0B
#def i ne EPCNFG | N_EN 0x40
#defi ne EPCNFG_| SO _EN 0x10

/* Configuration of 1SO QUT */
Set Endpoi nt Conf i g( EPCNFG_FI FO_EN

| EPCNFG_DBLBUF_EN\

| EPCNFG_| SOsZ_512\

| EPCNFG_| SO EN \

| SO _EPI ndex\ /* Ranges from 0x00 — OxOF, dependi ng on whi ch endpoint you */
/* configure as | SO QUT. */
)

/* Configuration of 1SOIN */
Set Endpoi nt Conf i g( EPCNFG_FI FO_EN
| EPCNFG_DBLBUF_EN
| EPCNFG_| SOSZ_512\
| EPCNFG_I SO EN \
| EPCNFG_I N_EM
| SO_EPI ndex\ /* Ranges from O0x00 — OxOF, dependi ng on which endpoi nt you */
/* configure as SO IN */

) .

Figure 6-25: Code Example for Configuring an 1ISO OUT or ISO IN Endpoint

The function definition of SetEndpointConfig(UCHAR bEPConfig, UCHAR bEPIndex) is given in Figure 6-26.

voi d Set Endpoi nt Confi g( UCHAR bEPConfi g, UCHAR bEPI ndex)
{

out port (D13_COWAND_PORT, (USHORT)(WR_EP_CONFI G+bEPI ndex)); /* WR_EP_CONFI G = 0x20 */
out port ( D13_DATA PORT, ( USHORT) bEPConfi g) ;

Figure 6-26: Function Definition of void SetEndpointConfig(UCHAR bEPConfig, UCHAR bEPIndex)

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 66

ISP1161x Embedded Programming Guide Rev. 1.0

Figure 6-27 and Figure 6-28 contains the flowcharts of the ISO OUT handler and the ISO IN handler, respectively.

ISO OUT
Handler

Clear ISO OUT Interrupt Bit
(see Figure 6-29)

4

Read ISO OUT Endpoint Buffer
(see Figure 6-30)

No

All Data
Received?

Yes

v

End of ISO OUT
Handler

Figure 6-27: Flowchart of the ISO OUT Handler

ISO IN Handler

Clear ISO IN Interrupt Bit
(see Figure 6-29)

A4

Write ISO IN Buffer
(see Figure 6-31)

No

Last
Packet?

Yes

\ 4
End of ISO IN
Handler

Figure 6-28: Flowchart of the ISO IN Handler

Time is a key element of an isochronous transfer. A typical example of the isochronous data is voice. All isochronous
pipes move exactly one data packet in each frame, that is, every 1 ms.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 67

ISP1161x Embedded Programming Guide Rev. 1.0

A pseudocode for reading the Endpoint Status register is given in Figure 6-29. This clears the corresponding endpoint
interrupts.

UCHAR Read_Endpoi nt _St at us( UCHAR EPI ndex)
{

UCHAR c;

out port (D13_COWAND_PORT, READ EP_ST + EPI ndex); /* READ EP_ST = 0x50 */
¢ = (UCHAR) (i nport (D13_DATA PORT) & 0xOff);

return c;

Figure 6-29: Code Example for Reading the Endpoint Status Register

USHORT Readl SOCEndpoi nt (UCHAR bEPI ndex, USHORT* ptr, USHORT | en)

{
USHORT i, j;
/* Sel ect the endpoint */

out port ( D13_COMVAND_PORT, READ EP+ bEPI ndex); /* READ-EP = 0x10 */
j = inport (D13_DATA PORT); /* Reading length of data in the buffer */

if(j '=1len)
j = len;

/* Read the buffer */

for(i=0; i<j; i++)

*(ptr + i) = inport(D13_DATA PORT);
/* Cear the buffer */

out port ( D13_COMVAND_PORT, CLEAR BUF+bEPI ndex); /* CLEAR BUF = 0x70 */
return j;

Figure 6-30: Code Example for Reading from an 1SO Endpoint Buffer

USHORT Wit el SOEndpoi nt (UCHAR bEPI ndex, USHORT* ptr, USHORT | en)
{

USHORT i ;
static UCHAR j;

/* Select the endpoint */
out port (D13_COMVAND PORT, WRI TE_EP + bEPI ndex); /* WRI TE_EP = 0x00 */
out port (D13_DATA PORT, len); /* Witing the length of data */

/* Wite the buffer */
for(i=0; i<len; i=i+2)
out port (D13_DATA PORT, *(ptr+i) );
/* Validate the buffer */
out port ( D13_COMVAND_PORT, VALI D BUF+bEPI ndex); /* VALID BUF = 0x60 */
return i;

Figure 6-31: Code Example for Writing to an 1SO Endpoint Buffer

6.6. Main Loop

When power is switched on, the microprocessor must initialize its ports, memory, timer, and interrupt service routine
handler. Then, the microprocessor reconnects USB, which involves setting the SOFTCT bit in the Mode register to ON.
This procedure is important because it ensures that the ISP1161x Device Controller will not operate before the
microprocessor is ready to serve the ISP1161x Device Controller.

The flowchart of the Main Loop is given in Figure 6-32. In the Main Loop routine, the microprocessor polls for any
activity on the keyboard. If any of the specific keys is pressed, the handle key commands will execute the routine and
then return to the Main Loop. This routine is added for debugging purposes only. A 1 ms timer is programmed to
activate the routine to check for any key pressed on the evaluation board.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity

ISP1161x Embedded Programming Guide

Initialize ports, memory and timer
Setup ISR and program interrupt controller
Reconnect USB

Read the key code and
handle the key command

Update test LEDs on the
evaluation board

Display the bus reset event

Read the suspend state and
display the suspend change
event

SETUPPROC

Dispatch the setup handler
for future processing

in

REQUESTPROC

Dispatch the device request to
the protocol layer for processing

o

Dispatch the setup DMA handler

Setup_dma? Yes-—»|
No <

‘ Program exit?

I
Yes

End

Figure 6-32: Flowchart of the Main Loop

Rev. 1.0

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 69

ISP1161x Embedded Programming Guide Rev. 1.0

Table 6-9: Mode Register: Bit Allocation

Bit 7 6 5 4 3 2 1 0
Symbol | DMAWD | reserved | GOSUSP | reserved | INTENA | DBGMOD  reserved = SOFTCT
Reset | ol 0 0 0 ol ol'l i) ol
Access | RIW RIW RIW RIW RAW RIW RIW R

[11 Unchanged by a bus reset

Table 6-10: Mode Register: Bit Description

Bit Symbol Description

T OnAaWY D M logic 1 selects 16-bit DMA bus width (bus configuration modes
0 and 2). A logic O selects 8-bit DMA bus width. Bus reset value:
unchanged.

G - reservad

5 GOSUSP Wiriting a logic 1 followed by a logic O will activate ‘suspend’
mode.

4 - reserviad

3 INTEMA, Alogic 1 enables all interrupts. Bus reset value: unchanged.

2 OBGMOD A logic 1 enables debug mode. whers all MAKs and errors will

generate an interrupt. A legic 0 selects normal operation, where
interrupts are generated on every ACK (bulk endpoints] or after
eviery data fransfer (isochronous endpoints). Bus reset value:
unchanged.

reservad

0 SOFTCT A logic 1 enables SoftConnect. This bit is ignored if EXTPUL =1
in the Hardware Configuration Register. Bus reset value:
unchanged.

Figure 6-33 contains a pseudocode for writing to the Mode register. An example on setting the SOFCT bit to enable
SoftConnect is given in Figure 6-34.

voi d Set Mode( UCHAR bMde) /1 Function definition
{

out port (D13_COVMAND_PORT, WRI TE_MOD REG); /* WRI TE_MOD REG = 0xB8 */
out port ( D13_DATA_PORT, bMbde);

Figure 6-33: Code Example for Writing to the Mode Register

Set Mode( MODE_| NT_EN /* MODE_I NT_EN = 0x08* enables all interrupts */
| MODE_SOFTCONNECT\ /* MODE_SOFTCONNECT = 0x01 enabl es Soft Connect */
| MODE_DVA16\ /* MODE_DMAL16 = 0x80* selects 16-bit DMVA bus width */

)

Figure 6-34: Code Example on Setting SoftConnect

When the polling reaches the check setup packet, the microprocessor verifies whether the current status is
SETUPPROC. Then, it dispatches it to set up handler subroutines for processing. On reaching REQUESTPROC, it
dispatches the device request to the protocol layer for processing.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb



Connectivity 70

ISP1161x Embedded Programming Guide Rev. 1.0

6.7. Standard Device Requests

All USB devices must respond to a variety of requests called “standard” requests. These requests are used for
configuring a device and controlling the state of its interface, along with other miscellaneous features. The host issues
these device requests by using the control transfer mechanism. The three states—Default State, Address State and
Configured State—must be taken care of. At a particular time, the device can be in only one of the states. For detailed
information, refer to Chapter 9 of USB Specification Rev. 2.0.

6.7.1. Clear Feature Request

In the Clear Feature request, the microprocessor must clear or disable a specific feature of the device based on the three
states. The flowchart of Clear Feature is given in Figure 6-35. In this case, the microprocessor determines whether the
request is meant for the device, interface or endpoints. There will not be any support if the recipient is an interface.
Feature selectors are used when enabling or setting features specific to the device or endpoint, such as remote wake-up.
If the recipient is a device, the microprocessor must disable the remote wake-up function, if this function is enabled. If
the recipient is an endpoint, the microprocessor must unstall the specific endpoint through the Write Endpoint Status

command.
Dev'ﬁﬂggz s;"dour 'S le—Default State Clear_Feature Configured State
Address State
Clear the device Clear the device
feature - - feature
A according to ¢——Yes Is :jeqplegta Is LeCIplegta Yes—»! according to |——¥
"Feature evice? levice? “Feature
Selector” Selector"
No No
Clear the Clear the
endpoint feature inient f - is recinient an endpoint feature
< according to «Yes. Is reqplent or Yes Is reaplgntan p I Yes—» according to »
"Feature endpoint zero? endpoint? endpoint? “Feature
Selector” Selector”

No

No i
l Request Error

Stall Endpoint

v

y| Sendzero- > End Clear_Feature Send zero-

Length Packet Length Packet

Figure 6-35: Flowchart of Clear Feature

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 71

ISP1161x Embedded Programming Guide Rev. 1.0

Zero-Length Packet

A zero-length packet is a data packet with data length as zero. It is not the same as placing a 0x00 in the buffer and
sending it out because this means a data length of 1 and a payload of 0x00. As can be seen in the pseudocode in Figure
6-13, sending a zero-length packet can be easily done by calling the Write_Endpoint() function with the arguments as
given.

/1 This function call will send a zero-length packet to the host through the control |IN endpoint.
Wite_Endpoint (1,0 ,0) // See Figure 6-13

Figure 6-36: Code Example to Send Zero-Length Packet

Request Error

When a control pipe request is not supported or the device is unable to transmit or receive data, a STALL must be
returned in response to an IN Token. A stalled control endpoint is automatically unstalled when it receives a Setup
token, regardless of the packet content. If the microcontroller wishes to unstall an endpoint, the Stall Endpoint or
Unstall Endpoint command can be used.

void Wite_EP_Status(UCHAR bEPI ndex, UCHAR bsStall ed)

{

if(bStall ed&0x01) // Check to stall or unstall the endpoint

out port (D13_COMVAND_PORT, STALL_EP + bEPI ndex); /* STALL_EP = 0x40 */

el se

out port (D13_COMVAND_PORT, UNSTALL_EP + bEPI ndex); /* UNSTALL_EP = 0x80 */
}

Figure 6-37: Code Example to Stall or Unstall an Endpoint

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity

ISP1161x Embedded Programming Guide

6.7.2.

Get Status Request
In the Get Status request, the microprocessor must return the status of the specific recipient based on the state of the
device. The microprocessor must also determine the recipient of the request. If the request is to a device, the
microprocessor must return the status of the device to the host, depending on the states. For a system having remote
wake-up and self-powering capabilities, the returning data is 0x0003. Figure 6-38 shows the Get Status flowchart.

Device behaviour
is undefined

Return device
status to the host

Request Error

Stall Endpoint

Pl

Return endpoint
status to the host

wYes

4—Default State

Is recipient
endpoint zero?

Get_Status

Address State

an interface?

Yes

Request Error

No Stall Endpoint

«—No

4
L/ Endof

Configured State

s recipient
a device?

S recipien
an endpoint?

Rev. 1.0

Return device
status to the host

Return interface

status to the host

Return endpoint

status to the host

"\ Get_Status /°

Figure 6-38: Flowchart of Get Status

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity

Rev. 1.0

ISP1161x Embedded Programming Guide

6.7.3. Set Address Request

In the Set Address request (see Figure 6-39), the device gets the new address from the content of the Setup packet. Note
that this Set Address request does not have a Data phase. Therefore, the microprocessor must write a zero-length data

packet to the host at the acknowledgment phase.

Set_Address

Default State ————————— ——  Address State

\‘//\

Is the address

Is the address

No non-zero? i Configured State i non-zero? Yef
Write zero to the Write new address to the Write zero to the Device Write new address to the
Device Address register. Device Address register. Address register. Device Address register.
State = Default State State = Address State State = Default State State = Address State

.| Send zero-length | Device
packet to the host behaviour is .| Send zero-length
undefined packet to the host

v
»  End Set_Address |«

Figure 6-39: Flowchart of Set Address

Figure 6-40 shows a pseudocode of the Set Address routine.

voi d Set Addr ess( UCHAR bAddr ess, UCHAR bEnabl e)
{

out port ( D13_COMVAND_PORT, WR DEV_ADD); // VR _DEV_ADD = 0xB6
i f(bEnabl e) // Enables or disables the address

bAddress | = ADDR_EN; /* ADDR_EN = 0x80 */
el se
bAddress & ADDR MASK; /* ADDR MASK = Ox7F */
out port (D13_DATA PORT, bAddress);
}
Figure 6-40: Code Example of the Set Address Routine
Table 6-11: Device Address Register: Bit Allocation
Bit T 6 5 4 3 2 1 i}
Symbol | DEVEM DEVADR]E0]
Reset | 0 0 0 0 0 0 0 0
Access | R RN RAN RAN R RN RAN RN

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity

ISP1161x Embedded Programming Guide

Table 6-12: Device Address Register: Bit Description

Bit Symbol
) DEVEM
6 to 0 DEVADR[G:0]

Description
Adogic 1 enables the device.

This field specifies the USB device address.

6.7.4. Get Configuration Request

In the Get Configuration request (see the flowchart in Figure 6-41), the microprocessor must return the current
configuration value. The microprocessor first determines what state the device is in. Depending on the state, the
microprocessor will either send a zero or the current non-zero configuration value back to the host.

Address State

Get_Configuration

\/h

Default State

Configured State

Rev. 1.0

A

Send "0" to the host

Device
behaviour is

undefined

configuration value of the
current configuration to

Send non-zero

the host

oY

| i}

A 4

End
Get_Configuration

Figure 6-41: Flowchart of Get Configuration

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity

ISP1161x Embedded Programming Guide

6.7.5. Get Descriptor Request

Rev. 1.0

For the Get Descriptor request, the microprocessor must return the specific descriptor, if the descriptor exists. First, the
microprocessor determines whether the descriptor type request is for a device or configuration. It then sends the first 64
bytes of the device descriptor, if the descriptor type is for a device. The reason for controlling the size of returning bytes
is that the control buffer has only 64 bytes of memory. The microprocessor must set a register to indicate the location of
the transmitted size. The Get Descriptor request is a valid request for Default State, Address State and Configured State.

Figure 6-42 shows the flowchart of Get Descriptor.

Get_Descriptor

Does the host
want a device
descriptor
request?

Yes

Does the
host want a
configuration
descriptor

request?

Yes

Does the host
want a string

descriptor
request?

Request Error Stall
Endpoint

End of

Send Device Descriptor

Send Configuration
Descriptor

Send String Descriptor

) J

Get_Descriptor

Figure 6-42: Flowchart of Get Descriptor

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 76

ISP1161x Embedded Programming Guide Rev. 1.0

6.7.6. Set Configuration Request

For the Set Configuration request (see Figure 6-44), the microprocessor determines the configuration value from the
Setup packet. If the value is zero, the microprocessor must clear the configuration flag in its memory and disable the
endpoint. If the value is one, the microprocessor must set the configuration flag. Once the flag is set, the microprocessor
must also send the zero-data packet to the host at the acknowledgment phase.

Set_Configuration

\/ﬁ\

Default State

oy

Address State Configured State

No

Did the host

value as stated in
configuration
descriptor?

Did the host send
"0" to the device?

send the configuration

Did the host send
"0" to the device?

No

l

Request Error
Stall Endpoint

send the configuration
value as stated in the

Did the host

configuration

No

Request Error
Stall Endpoint

Device
Yes behaviour is Yes
i undefined i
State = Address State State = Address State

Send zero packet to the host Send zero packet to the host No
the

Yes -

l YIS descriptor?
State = Configured State State = Configured State

Send zero packet to the host Send zero packet to the host

<End Set_Configuration>

Figure 6-43: Flowchart of Set Configuration

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 77

ISP1161x Embedded Programming Guide Rev. 1.0
6.7.7. Get and Set Interface Requests

For the Get and Set Interface requests (see flowcharts in Figure 6-44 and Figure 6-45), the microprocessor just needs to
send one zero-data packet to the host because the Philips evaluation board only supports one type of interface. For the
Set Interface request on the Philips evaluation board, the microprocessor need not do anything except to send one zero
data packet to the host as the acknowledgment phase.

Get_Interface

\/r\

Request Error Default State
Stall Endpoint i Send a zero to

Configured state

£Address State

host

Device behaviour
is undefined

4
o/ End of \
\ Get_Interface /

Figure 6-44: Flowchart of Get Interface

Set_Interface

iAddress State Configured state
Request Error Default State
: Send a zero to
Stall Endpoint L
host
Device behaviour
is undefined
End of

Get_ Interface

Figure 6-45: Flowchart of Set Interface

6.7.8. Set Feature Request

The Set Feature request is just the opposite of the Clear Feature request. Figure 6-46 contains the flowchart of Set
Feature. If the recipient is a device, the microprocessor must set the feature of the device according to the feature
selector in the Setup packet. Again, there is no support for the Interface recipient. For example, if the feature selector is
0 (which means enabling endpoint), the Device Controller of the ISP1161x specific endpoint must be stalled through the
Write Endpoint Status command.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 78

ISP1161x Embedded Programming Guide Rev. 1.0

Set_Feature

Address State Configured State

Set the device feature

] according to €Yes

Set the device feature

Is recipient a Is recipient a according to

"Feature Selector" device? Default State device? "Feature Selector"
Send Zero-Length packet Send Zero-Length packet
No
Device
Set the endpoint feature Behavu_)ur IS Set the endpoint feature
ding to Undefined - -
according Is recipient Yesr! according to
"Feature Selector"” es "Feature Selector"
Send Zero-Length packet Send Zero-Length packet
No
Request Error Request Error
Stall Endpoint Stall Endpoint
v
v v o/ End \e v v

"\ Set_Feature /-~

Figure 6-46: Flowchart of Set Feature

6.7.9. Class Request

Support for class requests is not included in the Device Controller of the ISP1161x sample firmware.

6.8. Vendor Request

In the ISP1161x Device Controller sample firmware and applet, the vendor request sets up the Bulk transfer or the
isochronous transfer. This request is sent through the control pipe that is done by IOCTL_WRITE_REGISTER.
IOCTL_WRITE_REGISTER is defined by Microsoft® Still Image USB Interface in Windows® 98 DDK. A device
vendor may also define requests supported by the device.

6.8.1. Vendor Request for the Bulk Transfer
The device request is defined in Table 6-13.

Table 6-13: Device Request

Offset | Field Size | Value Comments

0 BmRequestType 1 0x40 Vendor request, host to device

1 Brequest 1 0x0C Fixed value for IOCTL_WRITE_REGISTER
2 Whvalue 2 0 Offset, set to zero

4 Windex 2 0x0471 | Fixed value of Setup Bulk transfer

6 Wilength 2 6 Data length of Setup Bulk transfer

The details requested by the Bulk transfer operation are sent in the Data phase after the Setup Token phase of the device
request. The sample firmware and applet use a proprietary definition, which is given in Table 6-14.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb




Connectivity 79

ISP1161x Embedded Programming Guide Rev. 1.0
Table 6-14: Proprietary Definition of the Sample Firmware and Applet
Offset | Field Comments
0 Address[7:0] The start address of the requested Bulk transfer.
1 Address[15:8] —
2 Address[23:16] | —
3 Size[7:0] Size of the transfer.
4 Size[15:8] —
5 Command Bit 7: 1—start Bulk transfer by DMA; 0—start Bulk transfer by P1O
Bit 0: 1—IN token; 0—OUT token.

6.8.2. CATC Capture of a PIO OUT Transfer
BmRequestType

Brequest Whvalue
Wiength

Fackal

19832 NEQnan0
Faokul®

1904 e isaTi[a} ]
Packet® =

1905 D000 s B
P kal it

004 T 2 [} LR T

Windex

Fankut®

2002 D000 D02 |00 Q0 00 00 Jo=TFRZ| 278 a
Fackat® = e

2003 D000 4B (278 11817

nonnano

Proprietary definition
Favkul® Il
2014 OSa0ana L 2 o EEEIEES) | IED
Fainket® AT DA T EQP
201 & D000 [ e Empty paCket
FPackald® m EaP
20113 N00an0 I=4B ETE|| 11200
Fackel® T EQR Data Payload 64 bytes
FLL ] DSs0oanG [0 ] 3 |o=os |soa)| 2

Facket® DaTAD H
2020 00000 Do i3 Qo00: 00 00 00 00 04 05 06 07 05 0 0A O OO OD OF OF L0 11 12 13 |O«COZE|3.00|) 4

OpZ0: 15 15 L& 17 18 19 1A 1E IC LD 1E 1F 20 Z1 22 23 24 Z5 2& IT ]
000 20 22 2k ZB 2C 20 ZKE 2F 30 31 32 33 34 35 36 37 30 39 i 38 J

DO&0:  3C b 38 3F |

T = coF
2021 pegrinlifa ] w4l | Z76||11262

Figure 6-47: CATC Capture of a PIO OUT Transfer

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb



Connectivity 80

ISP1161x Embedded Programming Guide Rev. 1.0

6.8.3. CATC Capture of a PIO IN Transfer
BmRequestType

Brequest Whvalue

Facket#

Svync

2025 00000001
FPacket # Syno D TAd 1A TA CRC16 | ECF | Idle
2026 ooo00001 | oxcE

Facket#
2033

Syne
aoadoao

EMDF
2 ul Ox15 | 3.00

DATA s

Fachket #
20324

Syno
aooooo0

Facket# g Svyno AUCH
2027 =l | 00000001 O=4B 27511802

Windex

Fachket # Svyno
2035 e[ 0000000t Proprietary definition
Facket# |7 Syno
2046 =3 | 0oooaooA
Fachket # Syno
zo47  [=]| oooooood
Empty packet
Facket# g Svyno
2042 =3 | ooooooo
Data Payload 64 bytes
Facket# |7 Syno
2051 I aooooaod
Facket# g Syno Idle
zo5z |5 [ oooooood [, ooo0: 00 00 00 00 04 05 06 07 058 09 04 OB OC 0D OE OF 10 11 12 13 |oxC62E|2.75| 6 |

0020: 14 15 16 17 18 19 1a 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27
0040; &8 29 24 2B 2C 2D ZE EF 30 31 32 33 34 35 36 37 38 39 34 3B
o060:  3C 5D 3E 3F

Facket# g Svyno AUCH
20532 =l | 0000000 O=4B 2.00|[11346

Figure 6-48: CATC Capture of a PIO IN Transfer

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb



Connectivity 81

ISP1161x Embedded Programming Guide Rev. 1.0

6.8.4. Vendor Request for the ISO Transfer
The device request is defined in Table 6-15.

Table 6-15: Device Request

Offset Field Size Value Comments
0 BmRequestType 1 0x40 Vendor request, host to device
1 Brequest 1 0x00 Fixed value for IOCTL_WRITE_REGISTER
2 Whvalue 2 — 0x0002 = 1SO OUT; 0x0001 = I1SO IN
4 Windex 2 — 0x0002 = 1SO OUT; 0x0001 = ISO IN
6 Wilength 2 0x00 Data length of Setup ISO transfer

For the ISO transfer, the applet and the firmware must pre-arrange the size of the transfer before the transfer can be
completed successfully. This is because the vendor request does not give any transfer size information to the firmware.
Therefore, if you want to transfer 512 bytes of data, the ISO endpoint must be set to 512 bytes, which is the default size
set by the firmware.

6.8.5. CATC Capture of an ISO OUT Transfer

Brequest Whvalue Wiength

BmRequestType

Facket #

1883
Facket #

1884 00000001
Packet # ECP

1885 poooo001 | oxaB [2.75][11802
Facket # 5 EC

1890 00000001 | 0x96 2 0 |oxis5|275]|] 6
Packet # IATA1 DATA [CRETE EC

1891 00000001 | OxD32 D o R s A M Empty packet
Packet # ECP

1892 00000001 | oxaB [2.75][11861
Packet # ADDR CRCH | die

1899 00000001 | OxB7 2 4 | oxiF | 2. 2
Packet # DATAC EISE

1900 00000001 | o0xC3 [512 bytes|0xF140]| 3.00 || 7758

Figure 6-49: CATC Capture of an ISO OUT Transfer

SETUS

ADDRE CRCS

00000001

Data Payload 512 bytes

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb



Connectivity 82

ISP1161x Embedded Programming Guide Rev. 1.0
6.8.6. CATC Capture of an ISO IN Transfer

Whvalue Windex Wilength

BmRequestType Brequest

Packet & SETLE ADDR

1803

00000001

Packet &
190

40 00 01 0

| ACK JISsly
11802

00000001

Packet &

1905 Q0000001 D><4B 3.00
Packet &
1916 Q0000001 D=95 2 0 D=1 | 2.75 5

DATAT DATA dle
00000001 | 0xD2 : : Empty packet

SR ECP Data Payload 512 b
11860 ata Payloa ytes

Packet &
1917

Packet &

LR

1518 00000001 CI><4B 2.75
Facket # [ ADDRE L

1825 00000001 =598 2 5 |e<i2 [3.00 5
Facket # DATAD DATA EREHE EC

1525 00000001 0xC3 |512 bytes |OxF140|2.75 || 77553

Figure 6-50: CATC Capture of an 1SO IN Transfer

\l

. References

ISP1161x Full-speed Universal Serial Bus single-chip host and device controller datasheet

Universal Serial Bus Specification Rev. 2.0 (full-speed section)

Open Host Controller Interface Specification for USB, Release: 1.0a.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiush.com or www.semiconductors.philips.com/buses/usb



	1. Introduction
	2. ISP1161x Software Models
	2.1. Host-Only Mode
	2.2. Device-Only Mode
	2.3. Simultaneous Host-and-Device Mode

	3. ISP1161x Hardware Models
	3.1. Host Controller Hardware Model
	3.2. Device Controller Hardware Model

	4. ISP1161x Software Architecture
	4.1. USB Host Software Architecture
	4.2. Host Stack Architecture
	4.3. USB Device Software Architecture

	5. Programming the Host Controller of ISP1161x
	5.1. Software Accessible Hardware Components
	5.2. HC Control and Status Registers
	5.2.1. Writing and Reading of the 16-Bit and 32-Bit Registers

	5.3. Writing and Reading of the ATL and ITL Buffers
	5.4. Typical Hardware Initialization Sequence
	5.4.1. Detecting the Host Controller
	5.4.2. Software Resetting the Host Controller
	5.4.3. Configuring the HcHardwareConfiguration Register
	5.4.4. Configuring Interrupts
	5.4.5. Configuring the HcFmInterval Register
	5.4.6. Configuring Root Hub Registers
	5.4.7. Setting the ITL and ATL Buffer Lengths
	5.4.8. Installing INT1 Interrupt Service Routine
	5.4.9. Setting the Host Controller to the Operational State
	5.4.10. Setting the Host Controller to Perform USB Enumeration

	5.5. Host Controller Driver Operation Flow
	5.6. Accessing the ATL Buffer
	5.6.1. Using SOFITLInt Versus ATLInt
	5.6.2. Starting Scan of the ATL Buffer by Hardware

	5.7. Accessing the ITL Buffer
	5.8. Flowchart of the Host Controller in the Operational Mode
	5.9. Setting Up PTDs for Transfers
	5.9.1. Control Transfer
	5.9.2. Bulk, Interrupt and Isochronous Transfers

	5.10. Data Structures for List Processing
	5.11. Error Handling

	6. Programming the Device Controller of ISP1161x
	6.1. Firmware Structure of the Device Controller
	6.1.1. Hardware Abstraction Layer—HAL4SYS.C
	6.1.2. Hardware Abstraction Layer—HAL4D13.C
	6.1.3. Interrupt Service Routine—ISR.C
	6.1.4. Protocol Layer—CHAP_9.C
	6.1.5. Protocol Layer—D13BUS.C
	6.1.6. Main Loop—MAINLOOP.C

	6.2. Porting the Firmware to Other CPU Platform
	6.3. Developing the Firmware in the Polling Mode
	6.4. Hardware Abstraction Layer
	6.4.1. Hardware Abstraction Layer for the System
	6.4.2. Hardware Abstraction Layer for the Device Controller of ISP1161x

	6.5. Interrupt Service Routine
	6.5.1. Bus Reset
	6.5.2. Suspend Change
	6.5.3. EOT Handler
	6.5.4. Control Endpoint Handler
	6.5.5. Control OUT Handler
	6.5.6. Control IN Handler
	6.5.7. Bulk Endpoint Handler
	6.5.8. ISO Endpoint Handler

	6.6. Main Loop
	6.7. Standard Device Requests
	6.7.1. Clear Feature Request
	6.7.2. Get Status Request
	6.7.3. Set Address Request
	6.7.4. Get Configuration Request
	6.7.5. Get Descriptor Request
	6.7.6. Set Configuration Request
	6.7.7. Get and Set Interface Requests
	6.7.8. Set Feature Request
	6.7.9. Class Request

	6.8. Vendor Request
	6.8.1. Vendor Request for the Bulk Transfer
	6.8.2. CATC Capture of a PIO OUT Transfer
	6.8.3. CATC Capture of a PIO IN Transfer
	6.8.4. Vendor Request for the ISO Transfer
	6.8.5. CATC Capture of an ISO OUT Transfer
	6.8.6. CATC Capture of an ISO IN Transfer


	7. References

